
Transaction management

Macneil Fernandes©2005

Introduction to Transactions
• A transaction is a logical unit of work that contains one or more

SQL statements.
• A transaction is an atomic unit.
• The effects of all the SQL statements in a transaction can be either

all committed (applied to the database) or all rolled back (undone
from the database).

• A transaction begins with the first executable SQL statement.
• A transaction ends when it is committed or rolled back, either

explicitly with a COMMIT or ROLLBACK statement or implicitly
when a DDL statement is issued.

Macneil Fernandes©2005

Statement Execution and Transaction Control

• A SQL statement that executes successfully is different from a
committed transaction.

• Executing successfully means that a single statement was:
• Parsed
• Found to be a valid SQL construction
• Executed without error as an atomic unit.

• However, until the transaction that contains the statement is
committed, the transaction can be rolled back, and all of the
changes of the statement can be undone.

Macneil Fernandes©2005

Statement-Level Rollback
• If at any time during execution a SQL statement causes an error, all

effects of the statement are rolled back.
• The effect of the rollback is as if that statement had never been

executed. This operation is a statement-level rollback.
• Errors discovered during SQL statement execution cause

statement-level rollbacks.
• Single SQL statements involved in a deadlock (competition for the

same data) can also cause a statement-level rollback.
• A SQL statement that fails causes the loss only of any work it

would have performed itself. It does not cause the loss of any work
that preceded it in the current transaction.

Macneil Fernandes©2005

Resumable Space Allocation
• Oracle9i provides a means for suspending, and later resuming, the

execution of large database operations in the event of space
allocation failures.

• This enables an administrator to take corrective action, instead of
the Oracle database server returning an error to the user.

• After the error condition is corrected, the suspended operation
automatically resumes. This feature is called resumable space
allocation and the statements that are affected are called resumable
statements.

• A statement executes in a resumable mode only when the client
explicitly enables resumable semantics for the session using the
ALTER SESSION statement.

Macneil Fernandes©2005

Resumable Space Allocation
• A resumable statement is suspended when one of the following

conditions occur:
• Out of space condition
• Maximum extents reached condition
• Space quota exceeded condition

• For a nonresumable statement, these conditions result in errors and
the statement is rolled back.

• Suspending a statement automatically results in suspending the
transaction. Thus all transactional resources are held through a
statement suspend and resume.

• When the error condition disappears (for example, as a result of
user intervention or perhaps sort space released by other queries),
the suspended statement automatically resumes execution.

Macneil Fernandes©2005

Oracle and Transaction Management
• A transaction in Oracle begins when the first executable SQL

statement is encountered.
• When a transaction begins, Oracle assigns the transaction to an

available rollback segment to record the rollback entries for the new
transaction.
• A transaction ends when any of the following occurs:
• You issue a COMMIT or ROLLBACK statement without a SAVEPOINT

clause.
• You execute a DDL statement such as CREATE, DROP, RENAME, or
ALTER. If the current transaction contains any DML statements, Oracle
first commits the transaction, and then executes and commits the DDL
statement as a new, single statement transaction.

• A user disconnects from Oracle. The current transaction is committed.
• A user process terminates abnormally. The current transaction is rolled back.

• After one transaction ends, the next executable SQL statement
automatically starts the following transaction.

Macneil Fernandes©2005

Commit Transactions
• Committing a transaction means making permanent the changes

performed by the SQL statements within the transaction.
• Before a transaction that modifies data is committed, the following

has occurred:
• Oracle has generated rollback segment records in rollback segment buffers of

the system global area (SGA). The rollback information contains the old data
values changed by the SQL statements of the transaction.

• Oracle has generated redo log entries in the redo log buffer of the SGA. The
redo log record contains the change to the data block and the change to the
rollback block. These changes may go to disk before a transaction is
committed.

• The changes have been made to the database buffers of the SGA. These
changes may go to disk before a transaction is committed.

• The data changes for a committed transaction, stored in the
database buffers of the SGA, are not necessarily written
immediately to the datafiles by the database writer (DBWn)
background process. This writing takes place when it is most
efficient for the database to do so. Macneil Fernandes©2005

Commit Transactions
• Committing means that a user has explicitly or implicitly requested

that the changes in the transaction be made permanent.
• An explicit request means that the user issued a COMMIT

statement.
• An implicit request can be made through normal termination of an

application or in data definition language,
• When a transaction is committed, the following occurs:

• The internal transaction table for the associated rollback segment records that
the transaction has committed, and the corresponding unique system change
number (SCN) of the transaction is assigned and recorded in the table.

• The log writer process (LGWR) writes redo log entries in the SGA’s redo log
buffers to the online redo log file. It also writes the transaction’s SCN to the
online redo log file.

• Oracle releases locks held on rows and tables.
• Oracle marks the transaction complete.

Macneil Fernandes©2005

Rollback of Transactions
• Rolling back means undoing any changes to data that have been

performed by SQL statements within an uncommitted transaction.
• Oracle uses rollback segments to store old values.
• The redo log contains a record of changes.
• Oracle allows you to roll back an entire uncommitted transaction.
• Alternatively, you can roll back the trailing portion of an

uncommitted transaction to a marker called a savepoint.
• In rolling back an entire transaction, without referencing any

savepoints, the following occurs:
• Oracle undoes all changes made by all the SQL statements in the transaction

by using the corresponding rollback segments.
• Oracle releases all the transaction’s locks of data.
• The transaction ends.

Macneil Fernandes©2005

Savepoints In Transactions
• You can declare intermediate markers called savepoints within the

context of a transaction.
• Savepoints divide a long transaction into smaller parts.
• Using savepoints, you can arbitrarily mark your work at any point

within a long transaction. You then have the option later of rolling
back work performed before the current point in the transaction but
after a declared savepoint within the transaction.

• After a rollback to a savepoint, Oracle releases the data locks
obtained by rolled back statements.

Macneil Fernandes©2005

Savepoints In Transactions

• When a transaction is rolled back to a savepoint, the following
occurs:
• Oracle rolls back only the statements executed after the savepoint.
• Oracle preserves the specified savepoint, but all savepoints that were

established after the specified one are lost.
• Oracle releases all table and row locks acquired since that savepoint but

retains all data locks acquired previous to the savepoint.

• The transaction remains active and can be continued.

Macneil Fernandes©2005

Transaction Naming
• Oracle9i, Release 1 (9.0.1), lets you name a transaction, using a

simple and memorable text string.
• Advantages:

• It is easier to monitor long-running transactions and to resolve in-doubt
distributed transactions.

• Log Miner can use transaction names to search for a specific transaction from
transaction auditing records in the redo log.

• You can use transaction names to find a specific transaction in data dictionary
tables, such as V$TRANSACTION.

• How Transactions Are Named
• You name a transaction by using the SET TRANSACTION ... NAME

command before you start the transaction.
• When you name a transaction, you associate the transaction’s name with its

ID.
• Transaction names do not have to be unique;

Macneil Fernandes©2005

Discrete Transaction Management
• Application developers can improve the performance of short,

nondistributed transactions by using the
BEGIN_DISCRETE_TRANSACTION procedure.

• This procedure streamlines transaction processing so that short
transactions can execute more rapidly.

• During a discrete transaction, all changes made to any data are
deferred until the transaction commits.

• The following events occur during a discrete transaction:
• Oracle generates redo information, but stores it in a separate location in

memory.
• When the transaction issues a commit request, Oracle writes the redo

information to the redo log file along with other group commits.
• Oracle applies the changes to the database block directly to the block.
• Oracle returns control to the application after the commit completes.

Macneil Fernandes©2005

Autonomous Transactions
• Autonomous transactions are independent transactions that can be

called from within another transaction.
• An autonomous transaction lets you leave the context of the calling

transaction, perform some SQL operations, commit or roll back
those operations, and then return to the calling transaction’s context
and continue with that transaction.

• Once invoked, an autonomous transaction is totally independent of
the main transaction that called it.

• It does not see any of the uncommitted changes made by the main
transaction and does not share any locks or resources with the main
transaction.

• One autonomous transaction can call another.

Macneil Fernandes©2005

Autonomous PL/SQL Blocks
• Use the pragma AUTONOMOUS_TRANSACTION. A pragma is a

compiler directive.
• When an autonomous PL/SQL block is entered, the transaction

context of the caller is suspended. This operation ensures that SQL
operations performed in this block (or other blocks called from it)
have no dependence or effect on the state of the caller’s transaction
context.

• When an autonomous block invokes another autonomous block or
itself, the called block does not share any transaction context with
the calling block.

• However, when an autonomous block invokes a non-autonomous
block (that is, one that is not declared to be autonomous), the called
block inherits the transaction context of the calling autonomous
block.

Macneil Fernandes©2005

Transaction Control Statements in
Autonomous Blocks
• Transaction control statements in an autonomous PL/SQL block

apply only to the currently active autonomous transaction.
• Examples of such statements are:

• SET TRANSACTION

• COMMIT
• ROLLBACK

• SAVEPOINT
• ROLLBACK TO SAVEPOINT

• Similarly, transaction control statements in the main transaction
apply only to that transaction and not to any autonomous
transaction that it calls.

• For example, rolling back the main transaction to a savepoint taken
before the beginning of an autonomous transaction does not roll
back the autonomous transaction.

Macneil Fernandes©2005

