
SQL Loader

Macneil Fernandes©2005

Introduction
• SQL*Loader loads data from external files into tables of an Oracle database.
• You can use SQL*Loader to do the following:

• Load data from multiple datafiles during the same load session.
• Load data into multiple tables during the same load session.
• Specify the character set of the data.
• Selectively load data (you can load records based on the records’ values).
• Manipulate the data before loading it, using SQL functions.
• Generate unique sequential key values in specified columns.
• Use the operating system’s file system to access the datafiles.
• Load data from disk, tape, or named pipe.
• Generate sophisticated error reports, which greatly aids troubleshooting.
• Load arbitrarily complex object-relational data.
• Use secondary datafiles for loading LOBs and collections.
• Use either conventional or direct path loading.
• Use a DB2 Load Utility control file as a SQL*Loader control file with few or no

changes.

Macneil Fernandes©2005

Introduction
• A typical SQL*Loader session takes as input a control file, which controls

the behavior of SQL*Loader, and one or more datafiles. The output of
SQL*Loader is an Oracle database (where the data is loaded), a log file, a
bad file, and potentially, a discard file.

• An example of the flow of a SQL*Loader session is shown

Macneil Fernandes©2005

SQL*Loader Control File
• The control file is a text file written in a language that SQL*Loader

understands.
• The control file tells SQL*Loader where to find the data, how to parse and

interpret the data, where to insert the data, and more.
• Although not precisely defined, a control file can be said to have three

sections.
• The first section contains session-wide information, for example:

• Global options such as bindsize, rows, records to skip, and so on
• INFILE clauses to specify where the input data is located
• Data to be loaded

• The second section consists of one or more INTO TABLE blocks. Each of
these blocks contains information about the table into which the data is to
be loaded, such as the table name and the columns of the table.

• The third section is optional and, if present, contains input data.

Macneil Fernandes©2005

Input Data and Datafiles
• SQL*Loader reads data from one or more files (or operating system

equivalents of files) specified in the control file.
• From SQL*Loader’s perspective, the data in the datafile is organized as

records. A particular datafile can be in fixed record format, variable record
format, or stream record format.

• The record format can be specified in the control file with the INFILE
parameter. (default is stream record format)

Macneil Fernandes©2005

Input Data and Datafiles
Fixed Record Format
• A file is in fixed record format when all records in a datafile are the same byte length.
• Fixed format is simple to specify. For example:

INFILE datafile_name "fix n"
• This example specifies that SQL*Loader should interpret the particular datafile as being in

fixed record format where every record is n bytes long.
• Consider the example control file data :

load data
infile ’example.dat’ "fix 11"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1, col2)

• The file ‘example.dat’ has the data as below:
001, cd, 0002,fghi,
00003,lmn,
1, "pqrs",
0005,uvwx,

Macneil Fernandes©2005

Input Data and Datafiles
Variable Record Format
• A file is in variable record format when the length of each record in a character field is

included at the beginning of each record in the datafile.
• This format provides some added flexibility over the fixed record format and a performance

advantage over the stream record format.
INFILE "datafile_name" "var n"

• In this example, n specifies the number of bytes(< 40) in the record length field. (Default 5)
• Consider the example control file data :

load data
infile ’example.dat’ "var 3"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1 char(5),col2 char(7))

• The file ‘example.dat’ has the data as below:
009hello,cd,010world,im,
012my,name is,

• The control file specification that tells SQL*Loader to look for data in the datafile
example.dat and to expect variable record format where the record length fields are 3
bytes long. Macneil Fernandes©2005

Input Data and Datafiles
Stream Record Format
• A file is in stream record format when the records are not specified by size; instead

SQL*Loader forms records by scanning for the record terminator.
• The specification of a datafile to be interpreted as being in stream record format :

INFILE datafile_name ["str terminator_string"]
• The terminator_string is specified as either ’ char_string’ or X’hex_ string’ where:

• ’ char_string’ is a string of characters enclosed in single or double quotation marks
• X’hex_string’ is a byte string in hexadecimal format

• When the terminator_string contains special (nonprintable) characters, it should be specified
as a X’hex_string’. Some nonprintable characters can be specified as (’ char_string’) by using
a backslash. For example:
load data
infile ’example.dat’ "str ’|\n’"
into table example
fields terminated by ’,’ optionally enclosed by ’"’
(col1 char(5),col2 char(7))

• The following is the data in the ‘example.dat’ file:
hello,world,|
james,bond,|

\n linefeed \t horizontal tab
\r carriage return \v vertical tab

Macneil Fernandes©2005

Input Data and Datafiles
Logical Records
• SQL*Loader organizes the input data into physical records, according to the

specified record format.
• By default a physical record is a logical record, but for added flexibility,

SQL*Loader can be instructed to combine a number of physical records into
a logical record.

• SQL*Loader can be instructed to follow one of the following two logical record
forming strategies:
• Combine a fixed number of physical records to form each logical record
• Combine physical records into logical records while a certain condition is true

Macneil Fernandes©2005

Input Data and Datafiles
Data Fields
• Once a logical record is formed, field setting on the logical record is done.
• Field setting is a process in which SQL*Loader uses control-file field

specifications to determine which parts of logical record data correspond to
which control-file fields.

• Most control-file field specifications claim a particular part of the logical
record. This mapping takes the following forms:
• The byte position of the data field’s beginning, end, or both, can be specified.
• The strings delimiting (enclosing and/or terminating) a particular data field can be

specified. A delimited data field is assumed to start where the last data field ended,
unless the byte position of the start of the data field is specified.

• The byte offset and/or the length of the data field can be specified. This way each field
starts a specified number of bytes from where the last one ended and continues for a
specified length.

• Length-value datatypes can be used. In this case, the first n number of bytes of the data
field contain information about how long the rest of the data field is.

Macneil Fernandes©2005

Data Conversion and Datatype Specification
• During a conventional path load, data fields in the datafile are converted into

columns in the database (direct path loads are conceptually similar, but the
implementation is different). There are two conversion steps:
1. SQL*Loader uses the field specifications in the control file to interpret the format of the

datafile, parse the input data, and populate the bind arrays that correspond to a SQL
INSERT statement using that data.

2. The Oracle database server accepts the data and executes the INSERT statement to
store the data in the database.

• The Oracle database server uses the datatype of the column to convert the
data into its final, stored form.

Macneil Fernandes©2005

Discarded and Rejected Records
• Records read from the input file might not be inserted into the database. Such records are

placed in either a bad file or a discard file.
• The Bad File

The bad file contains records that were rejected, either by SQL*Loader or by the Oracle
database server. Given below are some of the reasons why records are rejected.

• SQL*Loader Rejects
Records are rejected by SQL*Loader when the input format is invalid. For example, if the
second enclosure delimiter is missing, or if a delimited field exceeds its maximum length,
SQL*Loader rejects the record. Rejected records are placed in the bad file.

• Oracle Rejects
After a record is accepted for processing by SQL*Loader, a row is sent to the Oracle
database server for insertion. If Oracle determines that the row is valid, then the row is
inserted into the database. If not, the record is rejected, and SQL*Loader puts it in the bad
file. The row may be rejected, for example, because a key is not unique, because a required
field is null, or because the field contains invalid data for the Oracle datatype.

• The Discard File
As SQL*Loader executes, it may create a file called the discard file. The discard file contains
records that were filtered out of the load because they did not match any record-selection
criteria specified in the control file. The discard file therefore contains records that were not
inserted into any table in the database. Macneil Fernandes©2005

Log File and Logging Information
• When SQL*Loader begins execution, it creates a log file. If it cannot create a

log file, execution terminates.
• The log file contains a detailed summary of the load, including a description

of any errors that occurred during the load.

Macneil Fernandes©2005

SQL*Loader Command-Line Reference
Invoking SQL*Loader
• When you invoke SQL*Loader, you can specify certain parameters

to establish session characteristics. You specify values for
parameters, or in some cases, you can accept the default without
entering a value.

• For example:
• SQLLDR CONTROL=foo.ctl, LOG=bar.log,
BAD=baz.bad, DATA=etc.dat USERID=scott/tiger,
ERRORS=999, LOAD=2000,
DISCARD=toss.dis,DISCARDMAX=5

• If you invoke SQL*Loader without specifying any parameters,
SQL*Loader displays a help screen which lists the available
parameters and their default values.

Macneil Fernandes©2005

Command-Line Parameters
BAD (bad file)

• Default: The name of the datafile, with an extension of .bad.
• BAD specifies the name of the bad file created by SQL*Loader to

store records that cause errors specified during insert or that are
improperly formatted. If a filename is not, the default is used.

• CONTROL (control file)
• Default: none
• CONTROL specifies the name of the SQL*Loader control file that

describes how to load data. If a file extension or file type is not
specified, it defaults to .ctl. If the filename is omitted,
SQL*Loader prompts you for it.

Macneil Fernandes©2005

DATA (datafile)
• Default: The name of the control file, with an extension of .dat.
• DATA specifies the name of the datafile containing the data to be

loaded. If you do not specify a file extension or file type, the default
is .dat.

ERRORS (errors to allow)
• ERRORS specifies the maximum number of insert errors to allow.
• If the number of errors exceeds the value specified for ERRORS,

then SQL*Loader terminates the load.
• To permit no errors at all, set ERRORS=0. To specify that all

errors be allowed,use a very high number.
• On a single-table load, SQL*Loader terminates the load when

errors exceed this error limit. Any data inserted up that point,
however, is committed.

Macneil Fernandes©2005

LOAD (records to load)
• Default: All records are loaded.
• LOAD specifies the maximum number of logical records to load
• No error occurs if fewer than the maximum number of records are

found.

LOG (log file)
• Default: The name of the control file, with an extension of .log.
• LOG specifies the log file that SQL*Loader will create to store

logging information about the loading process.

Macneil Fernandes©2005

DISCARD (filename)
• Default: The name of the datafile, with an extension of .dsc.
• DISCARD specifies a discard file (optional) to be created by

SQL*Loader to store records that are neither inserted into a table
nor rejected.

• A discard file filename specified on the command line becomes the
discard file associated with the first INFILE statement in the
control file.

• If the discard file filename is specified also in the control file, the
command-line value overrides it.

Macneil Fernandes©2005

DISCARDMAX (integer)
• Default: ALL
• DISCARDMAX specifies the number of discard records to allow

before data loading is terminated. To stop on the first discarded
record, specify one (1).

Macneil Fernandes©2005

Control File Contents
• The SQL*Loader control file is a text file that contains data

definition language(DDL) instructions.
• DDL is used to control the following aspects of a SQL*Loader

session:
1. Where SQL*Loader will find the data to load
2. How SQL*Loader expects that data to be formatted
3. How SQL*Loader will be configured (memory management,

rejecting records,interrupted load handling, and so on) as it loads
the data

4. How SQL*Loader will manipulate the data being loaded

Macneil Fernandes©2005

Macneil Fernandes©2005

1.Comments in the Control File
• Comments can appear anywhere in the command section of the file,

but they should not appear within the data. Precede any comment
with two hyphens, for example:

--This is a comment
2. The LOAD DATA statement tells SQL*Loader that this is the

beginning of a new data load.
3. The INFILE clause specifies the name of a datafile containing

data that you want to load.
4. The BADFILE parameter specifies the name of a file into which

rejected records are placed.
5. The DISCARDFILE parameter specifies the name of a file into

which discarded records are placed.

Macneil Fernandes©2005

6. The APPEND parameter is one of the options you can use when
loading data into a table that is not empty.

7. The INTO TABLE clause allows you to identify tables, fields, and
datatypes. Itdefines the relationship between records in the datafile
and tables in the database.

8. The WHEN clause specifies one or more field conditions, based
upon which SQL*Loader decides whether or not to load the data.

• For example, the following clause indicates that any record with the
value "q" in the fifth column position should be loaded:
WHEN (5) = ’q’

• A WHEN clause can contain several comparisons, provided each is
preceded by AND.Parentheses are optional, but should be used for
clarity with multiple comparisons joined by AND, for example:
WHEN (deptno = ’10’) AND (job = ’SALES’)

Macneil Fernandes©2005

9. The TRAILING NULLCOLS clause tells SQL*Loader to treat any
relatively positioned columns that are not present in the record as
null columns.

• For example, consider the following data:
10 Accounting

• Assume that the preceding data is read with the following control
file and the record ends after dname:

INTO TABLE dept
TRAILING NULLCOLS
(deptno CHAR TERMINATED BY " ",
dname CHAR TERMINATED BY WHITESPACE,
loc CHAR TERMINATED BY WHITESPACE
)
In this case, the remaining loc field is set to null. Without the
TRAILING NULLCOLS clause, an error would be generated due
to missing data. Macneil Fernandes©2005

10. The remainder of the control file contains the field list, which
provides information about column formats in the table being
loaded.

• POSITION specifies the position of a data field.
For example:
ename POSITION (1:20) CHAR
empno POSITION (22-26) INTEGER EXTERNAL
allow POSITION (*+2) INTEGER EXTERNAL
TERMINATED BY "/"

• Column ename is character data in positions 1 through 20,
followed by column empno, which is presumably numeric data in
columns 22 through 26. Column allow is offset from the end of
empno by +2. Therefore, it starts in column 29 and continues until
a slash is encountered.

Macneil Fernandes©2005

Specifying the Datatype of a Data Field
• The datatype specification of a field tells SQL*Loader how to

interpret the data in the field.
• For example, a datatype of INTEGER specifies binary data, while
INTEGER EXTERNAL specifies character data that represents a
number.

• A CHAR field can contain any character data.
• Only one datatype can be specified for each field; if a datatype is

not specified, CHAR is assumed.

Macneil Fernandes©2005

• If the record satisfies the WHEN clauses for the table, or no WHEN
clauses are specified, SQL*Loader checks each field for a NULLIF
clause.

• If a NULLIF clause exists, SQL*Loader evaluates it.
• If the NULLIF clause is satisfied, SQL*Loader sets the field to
NULL.

• If the NULLIF clause is not satisfied, or if there is no NULLIF
clause,

• SQL*Loader checks the length of the field from field evaluation. If
the field has a length of 0 from field evaluation (for example, it was
a null field, or whitespace trimming resulted in a null field),
SQL*Loader sets the field to NULL.

Macneil Fernandes©2005

• The TERMINATED BY WHITESPACE clause is one of the
delimiters it is possible to specify for a field.

• If TERMINATED BY WHITESPACE is specified, data is read
until the first occurrence of a whitespace character (spaces, tabs,
blanks, line feeds, form feeds, or carriage returns).

• Then the current position is advanced until no more adjacent
whitespace characters are found. This allows field values to be
delimited by varying amounts of whitespace.

Macneil Fernandes©2005

• The ENCLOSED BY clause is another possible field delimiter.
• If a field is enclosed, or terminated and enclosed, then any

whitespace outside the enclosure delimiters is not part of the field.
• Any whitespace between the enclosure delimiters belongs to the

field,whether it is leading or trailing whitespace.

Macneil Fernandes©2005

