
PL/SQL for Oracle 8/8i
PL/SQL

PL/SQL

Block Structure
Datatypes
Declarations
Scope & Visibility
Control Constructs
Cursors
Error Handling
Sub Programs
Overloading Subprograms
Stored Procedures and Functions
Packages

PL/SQL
Object Types
External Procedures
Triggers
New PL/SQL Features in Oracle 8i

What is PL/SQL?
PL/SQL is Oracle's Procedural Language extension to SQL.
The PL/SQL language includes object oriented programming techniques

such as encapsulation, function overloading, information hiding (all
but inheritance) - Hence bridging the gap between database
technology and other programming languages.

PL/SQL permits the use of all SQL data manipulation statements as well
as transaction processing statements.

Basic PL/SQL Block Structure
PL/SQL is structured into blocks and can use conditional statements,

loops and branches to control program flow.
DECLARE

/* Definition of any variables or objects that are used
within the declared block. */

BEGIN
-- Statements that make up the block.

EXCEPTION
-- All exception handlers.

END
-- End of block marker.

PL/SQL Execution

PL/SQL Datatypes

PL/SQL provides a variety of predefined datatypes. In addition,
PL/SQL lets you define your own subtypes.

Predefined Datatypes
• A scalar type has no internal components.
• A composite type has internal components that can be manipulated

individually.
• A reference type holds values, called pointers, that designate other program

items.
• A LOB type holds values, called lob locators, that specify the location of large

objects (graphic images for example) stored out-of-line.

Predefined Datatypes

Composite Datatypes

What Is a Collection?
• A collection is an ordered group of elements, all of the same type
• Each element has a unique subscript that determines its position in the

collection.
• PL/SQL offers two kinds of collections:

Ø nested tables and
Ø varrays (short for variable-size arrays).

• Collections can have only one dimension and must be indexed by integers.

Composite Datatypes
Nested Tables- One-column database tables

• Items of type TABLE are called nested tables
• Oracle stores the rows of a nested table in no particular order. But, when you retrieve

the nested table into a PL/SQL variable, the rows are given consecutive subscripts
starting at 1.

Varray
• Items of type VARRAY are called varrays.
• They allow you to associate a single identifier with an entire collection.
• This association lets you manipulate the collection as a whole and reference

individual elements easily.
• A varray has a maximum size, which you must specify in its type definition.

Composite Datatypes
Updating individual elements in a collection

• Nested Tables: Here this can be achieved using the “THE” operator
• Varray: Here in order to modify an individual element we have to use PL/SQL

Ø e.g.: Adding a new element to an existing collection
DECLARE

dept_no NUMBER;
new_project Project;
position NUMBER;
my_projects ProjectList;

BEGIN
/* Retrieve project list into local varray. */
SELECT projects INTO my_projects FROM department

WHERE dept_no = dept_id FOR UPDATE OF projects;

Composite Datatypes
/* Extend varray to make room for new project. */

my_projects.EXTEND;
/* Move varray elements forward. */
FOR i IN REVERSE position..my_projects.LAST - 1 LOOP

my_projects(i + 1) := my_projects(i);
END LOOP;
/* Insert new project. */
my_projects(position) := new_project;
/* Update department table. */
UPDATE department SET projects = my_projects
WHERE dept_no = dept_id;

END;

VARRAYS versus Nested Tables
Varrays have a maximum size, but nested tables do not.
Varrays are always dense, but nested tables can be sparse. So, you can delete

individual elements from a nested table but not from a varray.
Oracle stores varray data in-line (in the same tablespace). But, Oracle stores nested

table data out-of-line in a store table, which is a system-generated database table
associated with the nested table.

When stored in the database, varrays retain their ordering and subscripts, but nested
tables do not.

Records
A record is a group of related data items stored in fields, each with its

own name and datatype.
• Suppose you have various data about an employee such as name, salary, and hire

date. These items are logically related but dissimilar in type. A record containing a
field for each item lets you treat the data as a logical unit. Thus, records make it
easier to organize and represent information.

Record Vs %ROWTYPE
• The attribute %ROWTYPE lets you declare a record that represents a row in a

database table.
• However, you cannot specify the datatypes of fields in the record or declare fields of

your own.
• The datatype RECORD lifts those restrictions and lets you define your own records.

Records

DECLARE
TYPE FlightRec IS RECORD (

flight_no NUMBER(3), gate CHAR(5), departure CHAR(15), arrival CHAR(15),
passengers PassengerList); flight_info FlightRec;

CURSOR c1 IS SELECT * FROM flights;
BEGIN

OPEN c1;
LOOP

FETCH c1 INTO flight_info;
EXIT WHEN c1%NOTFOUND;
FOR i IN 1..flight_info.passengers.LAST LOOP

IF flight_info.passengers(i).seat = 'NA' THEN
DBMS_OUTPUT.PUT_LINE(flight_info.passengers(i).name);
RAISE seat_not_available;

END IF;
END LOOP;

END LOOP;
CLOSE c1;

EXCEPTION
WHEN seat_not_available THEN ……...

END;

LOB Types
LOB Types

• The LOB (large object) datatypes BFILE, BLOB, CLOB, and NCLOB let you store
blocks of unstructured data (such as text, graphic images, video clips, and sound
waveforms) up to four gigabytes in size.

• Allow efficient, random, piece-wise access to the data.
• LOB types store values, called locators, that specify the location of large objects

stored in an external file, in-line (inside the row) or out-of-line (outside the row).
• Database columns of type BLOB, CLOB, NCLOB, or BFILE store the locators.
• BLOB, CLOB, and NCLOB data is stored in the database, in or outside the row.

BFILE data is stored in operating system files outside the database.

LOB Types
• PL/SQL operates on LOBs through the locators.

Ø For example, when you retrieve a BLOB column value, only a locator is returned. Locators
cannot span transactions or sessions.

Ø So, you cannot save a locator in a PL/SQL variable during one transaction or session,
then use it in another transaction or session.

Ø To manipulate LOBs, you use the supplied package DBMS_LOB.

LOB types Vs. LONG types
• LOBs (except NCLOB) can be attributes of an object type, but LONGs cannot.
• The maximum size of a LOB is four gigabytes, but the maximum size of a LONG is

two gigabytes.
• LOBs support random access to data, but LONGs support only sequential access.

NLS Types
Oracle provides National Language Support (NLS), which lets you

process single-byte and multi-byte character data and convert
between character sets.

It also lets our applications run in different language environments.
NCHAR and NVARCHAR2 store character strings formed from the

national character set.
NCHAR datatype

• Stores fixed-length (blank-padded if necessary) NLS character data.
NVARCHAR2 datatype

• Stores variable-length NLS character data.

User-Defined Subtypes

A subtype is a PL/SQL type that is based on an existing type, but
is given a new name

A subtype does not introduce a new type; it merely places an
optional constraint on its base type.

For e.g., PL/SQL internally predefines the subtypes CHARACTER
and INTEGER as follows:
• SUBTYPE CHARACTER IS CHAR;

Ø The subtype CHARACTER specifies the same set of values as its base type
CHAR, so CHARACTER is an unconstrained subtype.

• SUBTYPE INTEGER IS NUMBER(38,0); -- allows only whole numbers
Ø The subtype INTEGER specifies only a subset of the values of its base type

NUMBER, so INTEGER is a constrained subtype.

Declarations
Variables and Constants can be declared in the declarative part of any

PL/SQL block, subprogram, or package.
Declarations

• allocate storage space for a value
• specify its datatype
• name the storage location so that you can reference it.

Declarations can contain
• DEFAULT
• NOT NULL
• %TYPE
• %ROWTYPE

Declarations - Anchoring

You have two choices when you
declare a variable:

Hard-coding the datatype
Anchoring the datatype to another structure

Whenever possible, use anchored
declarations rather than explicit
datatype references

%TYPE for scalar structures
%ROWTYPE for composite structures

ename VARCHAR2(30);
totsales NUMBER (10,2);

Hard-Coded Declarations

v_ename emp.ename%TYPE;
totsales pkg.sales_amt%TYPE;

emp_rec emp%ROWTYPE;
tot_rec tot_cur%ROWTYPE;

Anchored Declarations

Scope and Visibility
The scope of an identifier is that region of a program unit (block,

subprogram, or package) from which you can reference the identifier.
An identifier is visible only in the regions from which you can reference

the identifier using an unqualified name.
• The following figure shows the scope and visibility of a variable named x, which is

declared in an enclosing block, then redeclared in a sub-block.

Scope and Visibility

Control Constructs
Conditional Control

• The selection statement tests a condition and then executes one sequence of
statements if the condition is satisfied.

IF condition THEN
sequence_of_statements;

END IF;

• EXAMPLE
IF sales > quota THEN

compute_bonus(empid);
UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;

END IF;

Control Constructs
IF..THEN

IF condition THEN
sequence_of_statements1;

ELSE
sequence_of_statements2;

END IF;
• EXAMPLE

IF trans_type = 'CR' THEN
UPDATE accounts SET balance = balance + credit WHERE …

ELSE
UPDATE accounts SET balance = balance - debit WHERE …

END IF;

Control Constructs
IF..THEN..ELSIF

IF <Condition> THEN
<Action>

ELSIF <Condition>
THEN <Action>

ELSE
THEN <Action>

END IF;

Control Constructs
Iterative Control

• The Loop statement
• The FOR Loop
• The WHILE Loop
• The GOTO Statement

Control Constructs
The Loop Statement

• Used to execute a sequence of statements a number of times.
BEGIN

......
LOOP

...
IF credit_rating < 3 THEN

...
EXIT WHEN credit_rating = 0; -- exit loop immediately

END IF;
END LOOP;

END;

Control Constructs
The FOR Loop

• The number of iterations through a FOR loop is known before the loop is entered.
FOR i IN 1..3 LOOP –– assign the values 1,2,3 to i

sequence_of_statements; –– executes three times
END LOOP;

Reverse loop in FOR
• With the reverse option Iteration proceeds from higher bound to lower bound.
FOR i IN REVERSE 1..3 LOOP –– assign the values 3,2,1 to i

sequence_of_statements; –– executes three times
END LOOP;

Control Constructs
The WHILE Loop

• The number of iterations through a WHILE loop is not known before entering the
loop.

WHILE i IS NOT NULL LOOP
...
IF sal _tab(i) > 5000 THEN

RAISE over_limit;
END IF;

END LOOP;

Control Constructs
GOTO statements

• The GOTO statement allows you to continue program processing at a specific label in
your program.

IF <condition> THEN
GOTO order_loop;

END IF;
...............
<<order_loop>>
LOOP
..........
END LOOP;

Cursors
A PL/SQL construct called a cursor lets you name a work area and

access its stored information.
Cursors are of two types

• Explicit Cursors
• Implicit Cursors

Cursor Attributes
Cursors have four attributes that can be effectively used to access the

cursor’s context area.
They are:

• %ROWCOUNT: The number of rows processed by a SQL statement.
• %FOUND: TRUE if at least one row was processed.
• %NOTFOUND: TRUE if no rows were processed.
• %ISOPEN: TRUE if cursor is open or FALSE if cursor has not been opened or has

been closed. Only used with explicit cursors.

Explicit Cursors

SELECT statements which return multiple records inside a
PL/SQL block can be declared as a cursor.

Cursors are controlled through four command statements.
They are:

• CURSOR IS: Defines the name and structure of the cursor together with the
SELECT statement that will populate the cursor with data. The query is
validated but not executed.

• OPEN: Executes the query that populates the cursor with rows.
• FETCH: Loads the row addressed by the cursor pointer into variables and

moves the cursor pointer on to the next row ready for the next fetch.
• CLOSE: Releases the data within the cursor and closes it. The cursor can be

reopened to refresh its data.

Explicit Cursors
Example

DECLARE
CURSOR c_emp IS

SELECT emp_code, salary FROM employee
WHERE deptno = 20;

BEGIN
OPEN c_emp;
LOOP

FETCH c_emp INTO str_emp_code, num_salary;
EXIT WHEN c_emp%NOTFOUND;
UPDATE….

END LOOP;
COMMIT;
CLOSE c_emp;

END;

Explicit Cursors
Cursor FOR Loop

• The cursor FOR loop simplifies the coding required as the need for opening , fetching or
closing the cursor is not required.

DECLARE
CURSOR c_emp IS

SELECT emp_code, salary FROM employee
WHERE deptno = 20;

BEGIN
FOR emp_rec IN c_emp /* Cursor index */
LOOP

UPDATE employee SET salary=emp_rec.salary+(emp_rec.salary*0.5)
WHERE emp_code = emp_rec.emp_code;

END LOOP;
COMMIT;

END;

Parameterized Cursors
Passing Parameters

• You use the OPEN statement to pass parameters to a cursor.
• For example, given the cursor declaration

DECLARE
emp_name emp.ename%TYPE;
salary emp.sal%TYPE;
CURSOR c1 (name VARCHAR2, salary NUMBER) IS SELECT ...

Any of the following statements opens the cursor:
OPEN c1(emp_name, 3000);
OPEN c1('ATTLEY', 1500);
OPEN c1(emp_name, salary);

Implicit Cursors
When the executable part of a PL/SQL block issues a SQL command,

PL/SQL creates an implicit cursor which has the identifier SQL.
The user cannot open,fetch from or close the implicit cursor. Oracle

opens the cursor implicitly.
However cursor attributes can be used to access its context area.

Implicit Cursors
Example

DECLARE
rows_affected CHAR(4);

BEGIN
UPDATE employee SET salary=salary*0.5 WHERE job=’Programmer’;
rows_affected :=TO_CHAR(SQL%ROWCOUNT)
IF SQL%ROWCOUNT >0 THEN

DBMS_OUTPUT.PUT_LINE(rows_affected || ‘Employee Records Modified
Successfully’);

ELSE
DBMS_OUTPUT.PUT_LINE(‘There are no Employees working as Programmers’);

END IF;
END;

Cursor Attr. Values

REF Cursors
Defining REF CURSOR Types

• Define a REF CURSOR type
• Define a cursor variable of that type
• Example

DECLARE
TYPE EmpCurType IS REF CURSOR RETURN
emp%ROWTYPE;
emp_cur EmpCurType

Error Handling
Exceptions

• Identifiers in PL/SQL that are raised during the execution of a block to terminate its
action.

• A block is always terminated when PL/SQL raises an exception
We can define your own error handler to capture exceptions and

perform some final actions before quitting the block.
If PL/SQL handles the exception within the block then the exception will

not propagate out to an enclosing block or environment.

Error Handling
There are two classes of exceptions,

• Predefined - Oracle predefined errors which are associated with specific error codes.
• User-defined - Declared by the user and raised when specifically requested within a

block. You may associate a user-defined exception with an error code if you wish.

Predefined Exceptions

Internally defined exceptions:
• NO_DATA_FOUND
• TOO_MANY_ROWS
• VALUE_ERROR
• ROWTYPE_MISMATCH
• DUP_VAL_ON_INDEX
• LOGIN_DENIED
• NOT_LOGGED_ON
• CURSOR_ALREADY_OPEN
• INVALID_CURSOR
• ZERO_DIVIDE
• STORAGE_ERROR
• TIMEOUT_ON_RESOURCE
• INVALID_NUMBER
• PROGRAM_ERROR

Predefined Exceptions

DECLARE
acct_type INTEGER := 7;

BEGIN
SELECT price / earnings INTO pe_ratio
FROM stocks
WHERE symbol = ’XYZ’; --might cause division–by–zero error

EXCEPTION
WHEN ZERO_DIVIDE THEN

INSERT INTO stats (symbol, ratio) VALUES
(’XYZ’, NULL);

COMMIT;
WHEN OTHERS THEN –– handles all other errors

ROLLBACK;
END; –– exception handlers and block end here

User Defined Exceptions

These exceptions are explicitly defined by the user and are called
using RAISE statements.
• Example

DECLARE
out_of_stock EXCEPTION;
number_on_hand NUMBER(4);

BEGIN
...
IF number_on_hand < 1 THEN

RAISE out_of_stock;
END IF;

EXCEPTION
WHEN out_of_stock THEN

-- handle the error
END;

Functions in Exceptions
In an exception handler, you can use the built-in functions

SQLCODE and SQLERRM to find out which error occurred and
to get the associated error message

DECLARE
err_num NUMBER;
err_msg VARCHAR2(100);

BEGIN
...

EXCEPTION
WHEN OTHERS THEN

err_num := SQLCODE;
err_msg := SUBSTR(SQLERRM, 1, 100);
INSERT INTO errors VALUES (err_num, err_msg);

END;

Advantages of PL/SQL Exceptions
Can handle errors conveniently without the need to code multiple

checks.
Improves readability by isolating error handling routines.
Improves reliability.

Subprograms
Subprograms are named PL/SQL blocks that can take parameters and

be invoked.
PL/SQL has two types of subprograms

• Procedures
• Functions.

Generally, we use a Procedure to perform an action and a Function to
compute a value.

Subprogram Parameter Modes
You use parameter modes to define the behavior of formal parameters.

The three parameter modes are:
• IN Mode
• OUT Mode
• IN OUT Mode

IN Mode
• Default mode
• Passes value to a program
• Formal parameters cannot be assigned a value
• Actual parameter can be a constant,initialized variable,literal or expression

Subprogram Parameter Modes

OUT Mode
• Must be specified
• Returns values to the caller
• Formal parameter acts like an uninitilaized variable
• Formal parameter cannot be used in an expression and must be assigned a

value
• Actual parameter must be a variable

IN OUT Mode
• Must be specified
• Passes initial value to subprogram and returns updated value to caller
• Formal parameter acts like an initialized variable.
• Formal parameter should be assigned a value
• Actual parameter must be a variable.

Declaring PL/SQL Subprograms
Subprograms can be declared in any PL/SQL block, subprogram, or package.
A subprogram must be declared before calling it.
Syntax for procedure in PL/SQL block

PROCEDURE procedure_name[(parameter[, parameter]...)]
{IS | AS}

[local declarations]
BEGIN

executable statements
[EXCEPTION

exception handlers]
END [name];

Overloading Subprograms

PL/SQL lets you overload subprogram names and type methods
We can use the same name for several different subprograms as long as

their formal parameters differ in number, order, or datatype family.
Consider we want to initialize the first n rows in two index-by tables that

were declared as follows:
DECLARE

TYPE DateTabTyp IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE RealTabTyp IS TABLE OF REAL INDEX BY BINARY_INTEGER;
hiredate_tab DateTabTyp;
sal_tab RealTabTyp;

BEGIN
...

END;

Overloading Subprograms

• We can write the following Procedure to initialize the index-by table named hiredate_tab:
PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
BEGIN

FOR i IN 1..n LOOP
tab(i) := SYSDATE;

END LOOP;
END initialize;

• And, we can write the next Procedure to initialize the index-by table named sal_tab:
PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS
BEGIN

FOR i IN 1..n LOOP
tab(i) := 0.0;

END LOOP;
END initialize;

Stored Procedures

Stored Procedures are database objects.
[CREATE [OR REPLACE]]
PROCEDURE procedure_name[(parameter[, parameter]...)]

[AUTHID {DEFINER | CURRENT_USER}] {IS | AS}
[PRAGMA AUTONOMOUS_TRANSACTION;]
[local declarations]

BEGIN
executable statements

[EXCEPTION
exception handlers]

END [name];
where parameter stands for the following syntax:
parameter_name [IN | OUT [NOCOPY] | IN OUT [NOCOPY]] datatype [{:= |

DEFAULT} expression]

Stored Procedures

Autonomous Transactions
The pragma AUTONOMOUS_TRANSACTION instructs the PL/SQL compiler to mark a
procedure as autonomous (independent).

Autonomous transactions let you suspend the main transaction, do SQL operations, commit
or roll back those operations, then resume the main transaction.

Stored Procedures
NOCOPY Hint

• By default, the OUT and IN OUT parameters are passed by value.
• When the parameters hold large data structures such as collections, records, and

instances of object types, all this copying slows down execution and uses up memory.
• To prevent that, you can specify the NOCOPY hint, which allows the PL/SQL compiler

to pass OUT and IN OUT parameters by reference.

Stored Procedures

CREATE PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS
current_salary REAL;
salary_missing EXCEPTION;

BEGIN
SELECT sal INTO current_salary FROM emp
WHERE empno = emp_id;
IF current_salary IS NULL THEN

RAISE salary_missing;
ELSE

UPDATE emp SET sal = sal + increase
WHERE empno = emp_id;

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
INSERT INTO emp_audit VALUES (emp_id, ’No such number’);

WHEN salary_missing THEN
INSERT INTO emp_audit VALUES (emp_id, ’Salary is null’);

END raise_salary;
Note: Composite types such as VARRAYS can also be passed as parameter to Stored Procedure

Stored Functions
A Stored Function is mainly used to compute a value
Stored Functions and Stored Procedures are structured alike, except

that Stored Functions have a RETURN clause.
CREATE FUNCTION function_name [(parameter[, parameter, ...])] RETURN datatype IS
[local declarations]
[PRAGMA AUTONOMOUS_TRANSACTION;]
BEGIN

executable statements
[EXCEPTION

exception handlers]
END [name];

Stored Functions

• Example 1:
CREATE FUNCTION sal_ok (salary REAL, title VARCHAR2)

RETURN BOOLEAN IS
min_sal REAL;
max_sal REAL;

BEGIN
SELECT losal, hisal INTO min_sal, max_sal FROM sals

WHERE job = title;
RETURN (salary >= min_sal) AND (salary <= max_sal);

END sal_ok;
• Example 2:

CREATE FUNCTION compound (years NUMBER, amount
NUMBER, rate NUMBER) RETURN NUMBER IS

BEGIN
RETURN amount * POWER((rate / 100) + 1, years);

END compound;

Advantages of Stored Procedures and Functions
Higher Productivity due to elimination of redundant coding.
Memory Saving. Only one copy of the stored program needs to be

loaded into the memory for execution by multiple users.
Application Integrity can be achieved by developing all the applications

around a library of stored programs.Coding errors can be reduced.
Tighter Security can be achieved by restricting users to specific

database operations by granting access only through subprograms.

Packages
A package is a Database object that groups logically related PL/SQL

types , objects and subprograms.
The two parts of a package are:

Ø PACKAGE SPECIFICATION
Ø PACKAGE BODY

The specification is the interface to your applications; it declares the
types, variables, constants, exceptions, cursors, and subprograms
available for use.

The body fully defines cursors and subprograms, and so implements
the specification.

Packages
The Package Specification

CREATE PACKAGE emp_actions AS
PROCEDURE hire_employee (emp_id INTGER, name VARCHAR2);
PROCEDURE fire_employee (emp_id INTEGER);
PROCEDURE raise_salary (emp_id INTEGER, increase REAL);

...
END emp_actions;

Packages

The Package Body
CREATE PACKAGE BODY emp_actions AS

PROCEDURE hire_employee (emp_id INTGER, name VARCHAR2, ...) IS
BEGIN

INSERT INTO emp VALUES (empno, ename, ...);
END hire_employee;
PROCEDURE fire_employee (emp_id INTEGER) IS
BEGIN

DELETE FROM emp WHERE empno = emp_id;
END fire_employee;
PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS salary

REAL;
BEGIN

SELECT sal INTO salary FROM emp WHERE empno = emp_id;
END raise_salary;

END emp_actions; /* End Package name */

Packages
Advantages of Package

• Modularity due to the encapsulation of logically related types , objects and
subprograms in the module.

• Easier Application design : specification can be compiled separately, without its body.
• Information Hiding: Types, objects and subprograms which are to be made public or

private can be specified.
• Added functionality: Packaged cursors and variables persist for the duration of the

session , so they can be shared by all the Stored Procedures that can execute in the
environment.

• Better Performance. When a package subprogram is called for the first time, the
whole package gets loaded into the memory. Disk I/O is therefore reduced.

Object Types

An object type encapsulates a data structure along with the functions and procedures
needed to manipulate the data.

At run time, when the data structure is filled with values, you have created an object.
You can create as many objects as you need and each object stores different real-world

values.
• The variables that form the data structure are called attributes.
• The Functions and Procedures that characterize the behavior of the object type are called

methods.
Structure of an Object Type

• Like a package, an object type has two parts: a specification and a body
• The specification is the interface to your applications; it declares a data structure (set of

attributes) along with the operations (methods) needed to manipulate the data.
• The body fully defines the methods, and so implements the specification.

Structure of an Object Type

Attribute declarations

Method Specifications

Specifications

Public Interface

Method Bodies

Body
Private Implementation

Object Type

CREATE TYPE Stack AS OBJECT (
top INTEGER,
MEMBER FUNCTION full RETURN BOOLEAN,
MEMBER PROCEDURE push (n IN INTEGER), ...);

CREATE TYPE BODY Stack AS
...

MEMBER PROCEDURE push (n IN INTEGER)
IS
BEGIN
IF NOT full THEN top := top + 1; ...
END push;

END;

External Procedures

An external procedure is a third-generation-language routine
stored in a dynamic link library (DLL), registered with PL/SQL,

It is called by to do special-purpose processing. The routine must
be callable from C but can be written in any language.

How PL/SQL Calls an External Procedure
• To call an external procedure, PL/SQL must know in which DLL it resides. So,

PL/SQL looks up the alias library in the EXTERNAL clause of the subprogram
that registered the external procedure, then has Oracle look up the DLL in the
data dictionary.

• Next, PL/SQL alerts a Listener process, which in turn spawns (launches) a
session-specific agent named extproc.

External Procedures
• Then, the Listener hands over the connection to extproc.
• PL/SQL passes to extproc the name of the DLL, the name of the external procedure, and any

parameters.
• Then, extproc loads the DLL and runs the external procedure.
• Finally, extproc passes to PL/SQL any values returned by the external procedure. Figure 10-2

shows the flow of control.

DLLs
Database

Listener

Extproc

Oracle PL/SQL

External Procedures
Set Up the Environment
DBA sets up the environment for calling external procedures by adding entries to the files tnsnames.ora

and listener.ora and by starting a Listener process exclusively for external procedures
Identify the DLL
a DLL is any dynamically loadable operating-system file that stores external procedures
If the DBA grants you CREATE ANY LIBRARY privileges, you can create your own alias libraries using

the following syntax:
• CREATE LIBRARY library_name {IS | AS} 'file_path';

Create alias library c_utils, which represents DLL utils.so:
• create library c_utils as '/DLLs/utils.so';

External Procedures
Designate the External Procedure
Find or write a new routine, then add it to the DLL, or simply designate a routine already in the

DLL.
Assume that C routine c_gcd, which finds the greatest common divisor of two numbers, is

stored in DLL utils.so and that you have EXECUTE privileges on alias library c_utils.
The C prototype for c_gcd follows:

• int c_gcd(int x_val, int y_val);
Write a PL/SQL stand-alone function named gcd that registers C routine c_gcd as an external

function:
• CREATE FUNCTION gcd (

x BINARY_INTEGER, y BINARY_INTEGER)
RETURN BINARY_INTEGER AS EXTERNAL
LIBRARY c_utils
NAME "c_gcd" -- quotes preserve lower case
LANGUAGE C;

External Procedures
Register the External Procedure

• EXTERNAL clause records information about the external procedure such as its location, its name, the
programming language in which it was written, and the calling standard under which it was compiled.

• EXTERNAL LIBRARY library_name
[NAME external_procedure_name]
[LANGUAGE language_name]
[CALLING STANDARD {C | PASCAL}]
[WITH CONTEXT]
[PARAMETERS (external_parameter[, external_prameter]...)];

• where external_parameter stands for
{ CONTEXT
| {parameter_name | RETURN} [property] [BY REF]
[external_datatype]}

• and property stands for
{INDICATOR | LENGTH | MAXLEN | CHARSETID | CHARSETFORM}

External Procedures
Calling an External Procedure

• In the example below, you call PL/SQL function gcd from an anonymous block.
• PL/SQL passes the two integer parameters to external function c_gcd, which returns their

greatest common divisor.

DECLARE
g BINARY_INTEGER;
a BINARY_INTEGER;
b BINARY_INTEGER;
...

BEGIN
...
g := gcd(a, b); -- call function
IF g IN (2,4,8) THEN ...

Triggers

Database Triggers
• A database trigger is a stored subprogram associated with a table.
• Oracle can automatically fire the database trigger before or after an INSERT,

UPDATE, or DELETE statement.
Applications where database triggers are useful

• Verify data integrity on insertion or update
• Implement delete cascade
• Log events transparently
• Enforce complex business rules
• Initiate business process
• Derive column values automatically
• Enforce complex security rules
• Maintain replicated data

Triggers
There are several types of database triggers:

• Triggers are broadly classified as under
Ø Statement Level
Ø Row Level

• The triggers are listed below
Row level Statement level

• Before insert Y Y
• After insert Y Y
• Before update Y Y
• After update Y Y
• Before delete Y Y
• After delete Y Y

Triggers
CREATE [OR REPLACE] TRIGGER [schema.]trigger

{BEFORE event | AFTER event | INSTEAD OF event}
referencing_clause WHEN (condition) pl_sql_block

event can be one or more of the following (separate multiple events with OR)
DELETE event_ref, INSERT event_ref, UPDATE event_ref
UPDATE OF column, column... event_ref
ddl_statement ON [schema.] {table|view}
ddl_statement ON DATABASE
SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN

event_ref:
ON [schema.]table
ON [schema.]view
ON [NESTED TABLE nested_table_column OF] [schema.]view

referencing_clause:
FOR EACH ROW
REFERENCING OLD [AS] old [FOR EACH ROW]
REFERENCING NEW [AS] new [FOR EACH ROW]
REFERENCING PARENT [AS] parent [FOR EACH ROW]

Instead Of Triggers
Use INSTEAD OF triggers to perform DELETE, UPDATE, or INSERT

operations on views, which are not inherently modifiable
The following view involves a join of two tables and the ability to update

records in the view is limited
CREATE VIEW worker_lodging_manager
AS
SELECT worker.name,

lodging.lodging,
lodging.manager

FROM worker,lodging
WHERE worker.lodging = lodging.lodging

Instead Of Triggers
If we use an INSTEAD OF trigger, we can tell Oracle how to update, delete, or insert

records in tables
CREATE TRIGGER worker_lodging_manager_update
INSTEAD OF UPDATE ON worker_lodging_manager
FOR EACH ROW
BEGIN

IF :old.name <> :new.name THEN
UPDATE worker SET name = :new.name WHERE name = :old.name;
END IF;
IF :old.lodging <> :new.lodging THEN
UPDATE worker SET lodging = :new.lodging WHERE name = :old.name;
END IF;
IF :old.lodging <> :new.lodging THEN
UPDATE lodging SET manager = :new.manager WHERE lodging = :old.lodging;
END IF;

END

New Database Triggers - In Oracle 8i
Prior to Oracle 8i, database triggers could be applied to tables only.

Essentially, they were table triggers.
Oracle 8i introduces eight new database triggers, which extend beyond

previous limitation.

Trigger Event Executes Before/After Trigger Description
STARTUP AFTER Executes when the database is started
SHUTDOWN BEFORE Executes when the database is shut down
SERVERERROR AFTER Executes when a server-side error occurs
LOGON AFTER Executes when a session connects to the

database
LOGOFF BEFORE Executes when a session disconnects from the

database
CREATE AFTER Executes when a database object is created;

could be created to apply to the schema or to the
entire database

ALTER AFTER Executes when a database object is altered;
could be created to apply to the schema or to the
entire database

DROP AFTER Executes when a database object is dropped;
could be created to apply to the schema or to the
entire database

New PL/SQL Features in Oracle 8i
Native Dynamic SQL

• Oracle 8i introduces the EXECUTE IMMEDIATE command, which provides a much simpler
way of creating and executing DDL statements, dynamic SQL, and dynamic PL/SQL as
compared to the DBMS_SQL package

• The EXECUTE IMMEDIATE command accepts any SQL statement except SELECT ones that
retrieve multiple rows.

• Example
CREATE OR REPLACE PROCEDURE Create_Customer

(Table_Name VARCHAR2, Customer_ID INTEGER,
Customer_Lastname VARCHAR2,Customer_Firstname VARCHAR2,
Customer_Address VARCHAR2, Customer_City VARCHAR2,
Customer_State VARCHAR2,Customer_Zip VARCHAR2,
Customer_Phone VARCHAR2) IS

cSQL_Statement VARCHAR2(200);

New PL/SQL Features in Oracle 8i

BEGIN
cSQL_Statement := 'INSERT INTO ' || LTRIM(RTRIM(Table_Name)) ||

' VALUES(:Id, :Last, :First, :Address, :City,
:State, :Zip, :Phone)';

EXECUTE IMMEDIATE cSQL_Statement
USING Customer_ID, Customer_Lastname, Customer_Firstname,
Customer_Address, Customer_City, Customer_State, Customer_Zip,
Customer_Phone;

EXCEPTION
WHEN OTHERS THEN

RAISE_APPLICATION_ERROR(-20101,
'Error in procedure Create_Customer.');

END Create_Customer;
• According to Oracle, Native Dynamic SQL provides 30 to 60 percent

performance improvements over DBMS_SQL.

New PL/SQL Features in Oracle 8i
Bulk Binds

• Oracle 8i introduces new PL/SQL FORALL and BULK COLLECT statements to
support bulk binds.
Ø The FORALL statement is specifically used for processing DML (INSERT, DELETE, and

UPDATE) statements to improve performance by reducing the overhead of SQL
processing.

Ø Example
FORALL nCount IN 1..10000

INSERT INTO Invoices (Invoice_Id, Invoice_Date, Invoice_Amount)
VALUES (Invoice_Id_Tab(nCount),

Invoice_Date_Tab(nCount),
Invoice_Amount_Tab(nCount));

Ø The equivalent statement for a bulk fetch is the BULK COLLECT clause, which can be
used as a part of SELECT INTO, FETCH INTO, or RETURNING INTO clauses:

New PL/SQL Features in Oracle 8i
Ø Example

SELECT Invoice_Id, Invoice_Date, Invoice_Amount
BULK COLLECT INTO Invoice_Id_Tab, Invoice_Date_Tab, Invoice_Amount_Tab
FROM Invoice;

Ø The BULK COLLECT clause can be used for both explicit (FETCH INTO) and implicit
(SELECT INTO) cursors.

Ø It fetches the data into the collection (PL/SQL table, varray) starting with element 1 and
overwrites all consequent elements until it retrieves all the rows.

• The bulk binds features allow users to increase the performance and reduce the
overhead of SQL processing by operating on multiple rows in a single DML
statement.
Ø The entire collection-not just one collection element at a time-is passed back and forth

between the PL/SQL and SQL engines.

New PL/SQL Features in Oracle 8i
Profiler

• An Oracle 8i PL/SQL programmer develops a large number of packages, so the need
to identify and solve performance problems becomes critical.

• Oracle 8i provides a profiler that analyzes PL/SQL code and locates bottlenecks.
• The DBMS_PROFILER package is an API that provides the capability to gather

statistics related to the execution of the PL/SQL program and identify performance
problems.

• The DBMS_PROFILER package is not created by default with the database; we have
to generate it with Oracle's ProfLoad.sql script.

• This script has to be executed by the SYS user and access has to be granted to
PUBLIC.

