
Table Functions
• Traditionally, once we'd loaded the flat file data into a staging table 

via a SQL*Loader script, the next stage would be to transform the 
data, either through a series of DML commands or by using a 
PL/SQL package.

• The transformation would have one or more stages, and the stages 
would run sequentially, one after the other.

• Oracle 9i now gives us the opportunity to improve on this situation, 
by allowing us to create our transformations as functions - functions 
that take our external table as an input, and output the transformed 
data as rows as columns that can be used to update a table. These 
functions, known as Table Functions 

• Table functions are defined as functions that can produce a set of 
rows as output. In other words, table functions return a collection 
type instance

Macneil Fernandes©2005



Pipelined Table Functions
• Oracle9i, Release 1 (9.0.1), allows table functions to pipeline 

results (return results iteratively) out of the functions.
• By pipelining table functions, you can string a number of them 

together and have them 'pass off' rows to the next process as soon 
as a batch of rows are transformed, meeting our requirement to 
minimize our inter-process wait states. 

Macneil Fernandes©2005



• Simple Example - Generating Some Random Data
• To create six unique random numbers between 1 and 49 with one 

SQL statement
• The solution without a pipelined function is as follows:-
• select r

from (select r
from (select rownum r
from all_objects
where rownum < 50)
order by dbms_random.value)
where rownum <= 6;

Macneil Fernandes©2005



• That query works by generating the numbers 1 .. 49, using the 
inline view.

• We wrap that innermost query as an inline view and sort it by a 
random value, using DBMS_RANDOM.VALUE. 

• We wrap that result set in yet another inline view and just take the 
first six rows.

• If we run that query over and over, we'll get a different set of six 
rows each time.

• For example, we'd like the inclusive set of all dates between 25-
FEB-2004 and 10-MAR-2004. The question becomes how to do 
this without a "real" table, and the answer lies in Oracle9i/10g with 
its PIPELINED function capability. 

Macneil Fernandes©2005



• We can write a PL/SQL function that will operate like a table. 
• We need to start with a SQL collection type; this describes what the 

PIPELINED function will return. 
• In this case, we are choosing a table of numbers; the virtual table we are 

creating will simply return the numbers 1, 2, 3, ... N:
create type array2
as table of number
/
Type created.

• Next, we create the actual PIPELINED function. This function will accept 
an input to limit the number of rows returned. If no input is provided, this 
function will just keep generating rows for a very long time 

Macneil Fernandes©2005



The PIPELINED keyword on line 4 allows this function to work as if it were a table:
create function

gen_numbers(n in number default null)
return array
PIPELINED
as
begin
for i in 1 .. nvl(n,999999999)
loop
pipe row(i);
end loop;
return;
end;

/
Function created. 

Macneil Fernandes©2005



Suppose we needed three rows for something. We can now do that in one of two ways:
select * from TABLE(gen_numbers(3));
COLUMN_VALUE

------------
1
2
3

or
select * from TABLE(gen_numbers)

where rownum <= 3;
COLUMN_VALUE

------------
1
2
3

Macneil Fernandes©2005



Now we are ready to re-answer the original question, using the following functionality:
select *

from (
select *
from (select * from table(gen_numbers(49)))
order by dbms_random.random
)
where rownum <= 6
/

COLUMN_VALUE
------------
47
42
40
15
48
23

Macneil Fernandes©2005



We can use this virtual table functionality for many things, such as generating 
that range of dates:

select to_date('25-feb-2004')+
column_value-1
from TABLE(gen_numbers(15))
/

Macneil Fernandes©2005



Steps to perform when using PL/SQL Table Functions
• 1. The producer function must use the PIPELINED keyword in its 

declaration.
• 2.The producer function must use an OUT parameter that is a record, 

corresponding to a row in the result set.
• 3. Once each output record is completed, it is sent to the consumer 

function through the use of the PIPE ROW keyword.
• 4.The producer function must end with a RETURN statement that does 

not specify any return value.
• 5.The consumer function or SQL statement then must use the TABLE 

keyword to treat the resulting rows from the PIPELINE function like a 
regular table. 

Macneil Fernandes©2005


