
Partitioning

Macneil Fernandes©2005



Introduction to Partitioning
• Partitioning lets you decompose large tables and indexes into 

smaller and more manageable pieces called partitions.
• SQL queries and DML statements do not need to be modified in 

order to access partitioned tables.
• However, once partitions are defined, DDL statements can access 

and manipulate individuals partitions rather than entire tables or 
indexes.

• Each partition of a table or index must have the same logical 
attributes, such as column names, datatypes, and constraints, but 
each partition can have separate physical attributes such as pctfree, 
pctused, and tablespaces.

• OLTP systems often benefit from improvements in manageability
and availability, while data warehousing systems benefit from 
performance and manageability.

Macneil Fernandes©2005



Introduction to Partitioning
Partitioning offers these advantages:
• It enables data management operations such data loads, index 

creation and rebuilding, and backup/recovery at the partition level, 
rather than on the entire table. This results in significantly reduced 
times for these operations.

• It improves query performance. In many cases, the results of a 
query can be achieved by accessing a subset of partitions, rather 
than the entire table.

• It can significantly reduce the impact of scheduled downtime for 
maintenance operations. Partition independence for partition 
maintenance operations lets you perform concurrent maintenance 
operations on different partitions of the same table or index.

• Partitioning increases the availability of mission-critical databases
• Partitioning can be implemented without requiring any 

modifications to your applications.

Macneil Fernandes©2005



A View of Partitioned Tables

Macneil Fernandes©2005



Introduction to Partitioning
Partition Key
• The partition key is a set of one or more columns that determines 

the partition for each row.
• Each row in a partitioned table is unambiguously assigned to a 

single partition.
• Oracle9i automatically directs insert, update, and delete operations 

to the appropriate partition through the use of the partition key.
• A partition key:

• consists of an ordered list of 1 to 16 columns
• cannot contain a LEVEL, ROWID, or MLSLABEL pseudocolumn or a 

column of type ROWID
• can contain columns which all the NULL value

Macneil Fernandes©2005



Introduction to Partitioning
Partitioned Tables
• Tables can be partitioned into any number of separate partitions.
• Any table can be partitioned except those tables containing columns 

with LONG or LONG RAW datatypes.

Partitioned Index-Organized Tables
• Only range and hash partitioning are supported
• Partition columns must be a subset of primary key columns
• Secondary indexes can be partitioned — locally and globally
• OVERFLOW data segments are always equipartitioned with the 

table partitions

Macneil Fernandes©2005



Partitioning Methods
Oracle provides the following partitioning methods:
• Range Partitioning
• List Partitioning
• Hash Partitioning
• Composite Partitioning

Macneil Fernandes©2005



Partitioning Methods
• Composite partitioning is a combination of other partitioning 

methods. Oracle currently supports range-hash composite 
partitioning.

Macneil Fernandes©2005



Range Partitioning
• Range partitioning maps data to partitions 

based on ranges of partition key values 
that you establish for each partition.

• It is the most common type of partitioning 
and is often used with dates.

• When using range partitioning, there are a 
few rules to keep in mind:
• Each partition has a VALUES LESS THAN 

clause, which specifies a noninclusive upper 
bound for the partitions. Any binary values of 
the partition key equal to or higher than this 
literal are added to the next higher partition.

• All partitions, except the first, have an implicit 
lower bound specified by the VALUES LESS 
THAN clause on the previous partition.

• A MAXVALUE literal can be defined for the 
highest partition.

Macneil Fernandes©2005



List Partitioning
• List partitioning enables you to 

explicitly control how rows map to 
partitions.

• You do this by specifying a list of 
discrete values for the partitioning key 
in the description for each partition.

• The advantage of list partitioning is 
that you can group and organize 
unordered and unrelated sets of data in 
a natural way.

• A row is mapped to a partition by 
checking whether the value of the 
partitioning column for a row falls 
within the set of values that describes 
the partition.

Macneil Fernandes©2005



Hash Partitioning
• Hash partitioning enables easy partitioning 

of data that does not lend itself to range or 
list partitioning.

• The concepts of splitting, dropping or 
merging partitions do not apply to hash 
partitions. Instead, hash partitions can be 
added and coalesced.

• It is a better choice than range partitioning 
when:

• You do not know beforehand how much data will map 
into a given range

• The sizes of range partitions would differ quite 
substantially or would be difficult to balance manually

• Range partitioning would cause the data to be 
undesirably clustered

• Performance features such as parallel DML, partition 
pruning, and partition-wise joins are important

Macneil Fernandes©2005



Composite Partitioning
• Composite partitioning 

partitions data using the 
range method, and within 
each partition, subpartition 
it using the hash method.

• Composite partitioning 
provides the improved 
manageability of range 
partitioning and the data 
placement, striping, and 
parallelism advantages of 
hash partitioning.

Macneil Fernandes©2005



When to Partition a Table

Here are some suggestions for when to partition a table:
• Tables greater than 2GB should always be considered for 

partitioning.
• Tables on which you want to perform parallel DML operations 

must be partitioned.
• Tables containing historical data, in which new data is added into 

the newest partition. A typical example is a historical table where 
only the current month’s data is updatable and the other 11 months 
are read-only.

Macneil Fernandes©2005



Partitioned Indexes
• Just like partitioned tables, partitioned indexes improve 

manageability, availability, performance, and scalability.
• They can either be partitioned independently (global indexes) or 

automatically linked to a table’s partitioning method (local 
indexes).

Local Partitioned Indexes
• It follows equipartitioning: each partition of a local index is 

associated with exactly one partition of the table.
• This enables Oracle to automatically keep the index partitions in 

sync with the table partitions, and makes each table-index pair 
independent.

• They are easier to manage, offer greater availability and are 
common in DSS environments.

Macneil Fernandes©2005



Partitioned Indexes
• You cannot explicitly add a partition to a local index. Instead, new 

partitions are added to local indexes only when you add a partition 
to the underlying table.

• Likewise, you cannot explicitly drop a partition from a local index. 
Instead, local index partitions are dropped only when you drop a 
partition from the underlying table.

Macneil Fernandes©2005



Partitioned Indexes
Global Partitioned Indexes
• Global partitioned indexes are flexible in that the degree of 

partitioning and the partitioning key are independent from the 
table’s partitioning method.

• The highest partition of a global index must have a partition bound, 
all of whose values are MAXVALUE.

• You cannot add a partition to a global index because the highest 
partition always has a partition bound of MAXVALUE. If you wish to 
add a new highest partition, use the ALTER INDEX SPLIT 
PARTITION statement.

• If a global index partition contains data, dropping the partition 
causes the next highest partition to be marked unusable. You 
cannot drop the highest partition in a global index.

Macneil Fernandes©2005



Partitioned Indexes
• Maintenance of Global Partitioned Indexes

• By default, the following operations on partitions on a heap-organized table 
mark all global indexes as unusable:
Ø ADD (HASH)
Ø COALESCE (HASH)
Ø DROP
Ø EXCHANGE
Ø MERGE
Ø MOVE
Ø SPLIT
Ø TRUNCATE

• These indexes can be maintained by appending the clause UPDATE 
GLOBAL INDEXES to the SQL statements for the operation.

• Advantages to maintaining global indexes: The index remains 
available and online throughout the operation AND The index 
doesn’t have to be rebuilt after the operation.

Macneil Fernandes©2005



Partitioned Indexes

Macneil Fernandes©2005



Partitioned Indexes
Global Nonpartitioned Indexes
• Global nonpartitioned indexes behave just like a nonpartitioned 

index.
• They are commonly used in OLTP environments and offer efficient 

access to any individual record.

Macneil Fernandes©2005



Partitioned Indexes
Miscellaneous Information about Creating Indexes on 
Partitioned Tables

• You can create bitmap indexes on partitioned tables, with the 
restriction that the bitmap indexes must be local to the partitioned 
table. They cannot be global indexes.

• Global indexes can be unique. Local indexes can only be unique if 
the partitioning key is a part of the index key.

Here are a few guidelines for OLTP applications:
• Global indexes and unique, local indexes provide better 

performance than nonunique local indexes because they minimize 
the number of index partition probes.

• Local indexes offer better availability when there are partition or 
subpartition maintenance operations on the table.

Macneil Fernandes©2005



Partitioned Indexes
Here are a few guidelines for DSS applications:
• Local indexes are preferable because they are easier to manage 

during data loads and during partition-maintenance operations.
• Local indexes can improve performance because many index 

partitions can be scanned in parallel by range queries on the index 
key.

Here are a few points to remember when using partitioned indexes on 
composite partitions:

• Only range partitioned global indexes are supported.
• Subpartitioned indexes are always local and stored with the table 

subpartition by default.
• Tablespaces can be specified at either index or index subpartition 

levels.
Macneil Fernandes©2005



Partitioning to Improve Performance
Partition Pruning
• The Oracle server explicitly recognizes partitions and subpartitions. 

It then optimizes SQL statements to mark the partitions or 
subpartitions that need to be accessed and eliminates (prunes) 
unnecessary partitions or subpartitions from access by those SQL 
statements.

• Partition pruning is the skipping of unnecessary index and data 
partitions or subpartitions in a query.

• Such intelligent pruning can dramatically reduce the data volume, 
resulting in substantial improvements in query performance.

• If the optimizer determines that the selection criteria used for 
pruning are satisfied by all the rows in the accessed partition or 
subpartition, it removes those criteria from the predicate list 
(WHERE clause)

Macneil Fernandes©2005



Partitioning to Improve Performance
• However, the optimizer cannot prune partitions if the SQL 

statement applies a function to the partitioning column (with the 
exception of the TO_DATE function). Similarly, the optimizer 
cannot use an index if the SQL statement applies a function to the 
indexed column, unless it is a function-based index.

• Equality, inequality (<, >, between) and IN-list 
predicates are considered for partition pruning with range 
partitioning, and equality and IN-list predicates are considered for 
partition pruning with hash partitioning.

Partition-wise Joins
• A partition-wise join is a join optimization that you can use when 

joining two tables that are both partitioned along the join column(s).

Macneil Fernandes©2005



Partitioning to Improve Performance
• With partition-wise joins, the join operation is broken into smaller 

joins that are performed sequentially or in parallel.
• Another way of looking at partition-wise joins is that they minimize 

the amount of data exchanged among parallel slaves during the 
execution of parallel joins by taking into account data distribution.

Parallel DML
• Parallel execution dramatically reduces response time.
• You can use parallel query and parallel DML with range- and hash-

partitioned tables. By doing so, you can enhance scalability and 
performance for batch operations.

Macneil Fernandes©2005


