
Key Compression

Macneil Fernandes©2005



Key Compression
• Key compression enables compression of portions of the key 

column values in an index.
• This reduces the storage overhead of repeated values.
• Keys in an index have two pieces

• a grouping piece(Repeating part of the key)
• a unique piece.(If the key is not defined to have a unique piece, Oracle 

provides one in the form of a rowid appended to the grouping piece.)
• Key compression is a method of breaking off the grouping piece

and storing it so it can be shared by multiple unique pieces.

Macneil Fernandes©2005



Prefix and Suffix Entries
• Key compression breaks the index key into a prefix entry (the grouping piece) 

and a suffix entry (the unique piece).
• Compression is achieved by sharing the prefix entries among the suffix entries 

in an index block.
• For example,

• In a key made up of three columns (column1, column2, column3) the default 
prefix is (column1, column2). For a list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), 
(1,3,4), (1,4,4) the repeated occurrences of (1,2), (1,3) in the prefix are 
compressed.

• Also one can specify the length of the prefix, (i.e. number of columns to be 
included in the prefix.)

• For example,
• If you specify prefix length 1, then the prefix is column1 and the suffix is 

(column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7),(1,3,5), (1,3,4), 
(1,4,4) the repeated occurrences of 1 in the prefix are compressed.

Macneil Fernandes©2005



Performance and Storage Considerations
• Key compression leads to 

• A huge saving in space (stores more keys in each index block)
• Less I/O and 
• Better performance.
• Increase in the CPU time required to reconstruct the key column values 

during an index scan.
• It also incurs some additional storage overhead, because every prefix 

entry has an overhead of 4 bytes associated with it.

Macneil Fernandes©2005



Implementing Key Compression
• Key compression can be useful in the following situations:

• For a non-unique index to which ROWID is appended to make the key unique. 
The duplicate key is stored as a prefix entry on the index block without the 
ROWID. The remaining rows become suffix entries consisting of only the ROWID.

• For a unique multi-column index.
• Enable key compression using the COMPRESS clause. The prefix length (as the 

number of key columns) can also be specified to identify how the key columns 
are broken into a prefix and suffix entry. 

CREATE INDEX emp_ename ON emp(ename)
TABLESPACE users
COMPRESS 1;

• The COMPRESS clause can also be specified during rebuild. For example, 
during rebuild you can disable compression as follows:

ALTER INDEX emp_ename REBUILD NOCOMPRESS;

Macneil Fernandes©2005



Bitmap Indexes

Macneil Fernandes©2005



Bitmap Indexes
• In a bitmap index, a bitmap for each key value is used instead of a 

list of rowids.
• Each bit in the bitmap corresponds to a possible rowid.
• If the bit is set, then it means that the row with the corresponding 

rowid contains the key value.
• A mapping function converts the bit position to an actual rowid, so 

the bitmap index provides the same functionality as a regular 
index even though it uses a different representation internally. 

Macneil Fernandes©2005



Bitmap Indexes
• The advantages of using bitmap indexes are greatest for low 

cardinality columns: (i.e. columns in which the number of distinct 
values is small compared to the number of rows in the table.)

• If the number of distinct values of a column is less than 1% of the 
number of rows in the table, or if the values in a column are 
repeated more than 100 times, then the column is a candidate for a 
bitmap index.

• For example,
• On a table with 1 million rows, a column with 10,000 distinct values is a 

candidate for a bitmap index.
• Even columns with a lower number of repetitions and thus higher 

cardinality can be candidates if they tend to be involved in complex 
conditions in the WHERE clauses of queries.

Macneil Fernandes©2005



Bitmap Index Example
• Consider the Table Given Below:
• From the Table Data we find the low cardinality columns to be:

• MARITAL_STATUS (three possible values), 
• REGION(three possible values),
• GENDER(two possible values), 

• Therefore, it is appropriate to create bitmap indexes on these 
columns.

CUSTOMER # MARITAL_STATUS REGION GENDER

101 single east male
102 married central female
103 married west female
104 divorced west male
105 single central female
106 married central female

Macneil Fernandes©2005



Bitmap Index Example
• The Figure below illustrates the Bitmap index for the REGION column in this 

example.
• It consists of three separate bitmaps, one for each region.
• Each entry or bit in the bitmap corresponds to a single row of the CUSTOMER 

table.
• The value of each bit depends upon the values of the corresponding row in the 

table.

010
010
100
100
010
001

REGION= 
’west’

REGION= 
’central’

REGION= 
’east’

The bitmap 
REGION=’east’ 
contains a one as its first 
bit. This is because the 
region is east in the 
first row of the 
CUSTOMER table.

The bitmap REGION=’east’ 
has a zero for its other bits 
because none of the other rows 
of the table contain east as 
their value for REGION.

maleeastsingle101

Macneil Fernandes©2005



Bitmap Index Example
• Similarly we can represent the Bitmap index for the GENDER 

column. 

GENDER 
= ‘male’

GENDER 
= ‘female’

1 0
0 1
0 1
1 0
0 1
0 1

• Consider the SQL Query:
SELECT COUNT(*) FROM CUSTOMER
WHERE marital_status = 'married'
AND region IN ('central','west');

CUSTOMER #

101
102
103
104
105
106

GENDER

male
female
female
male
female
female

Macneil Fernandes©2005



Bitmap Index Example(Executing a Query Using 
Bitmap Indexes)
• Bitmap indexes can process this query with great efficiency by 

counting the number of ones in the resulting bitmap, as illustrated 
below. 
status = 

‘married’
region = 
‘central’

region = 
‘west’

The rows that 
satisfy the criteria 

of the Query.

• Result of the Query: 
COUNT(*)

----------

3 Macneil Fernandes©2005


