Key Compression

Macneil Fernandes©2005

Key Compression

* Key compression enables compression of portions of the key
column values 1n an index.

e This reduces the storage overhead of repeated values.
 Keys in an index have two pieces
e a grouping piece(Repeating part of the key)

e a unique piece.(If the key is not defined to have a unique piece, Oracle
provides one in the form of a rowid appended to the grouping piece.)

e Key compression is a method of breaking off the grouping piece
and storing it so it can be shared by multiple unique pieces.

Macneil Fernandes©2005

Prefix and Suffix Entries

e Key compression breaks the index key into a prefix entry (the grouping piece)
and a suffix entry (the unique piece).

* Compression is achieved by sharing the prefix entries among the suffix entries
in an index block.
* For example,

e In a key made up of three columns (columnl, column2, column3) the default
prefix is (columnl, column2). For a list of values (1,2,3), (1,24), (1,2,7), (1,3,5),

(1,34), (1,4.4) the repeated occurrences of (1,2), (1,3) in the prefix are
compressed.
* Also one can specify the length of the prefix, (i.e. number of columns to be
included in the prefix.)

e For example,

e If you specify prefix length 1, then the prefix is columnl and the suffix is

(column2, column3). For the list of values (1,2,3), (1,24), (1,2,7),(1,3,5), (1,34),
(1,4,4) the repeated occurrences of 1 in the prefix are compressed.

Macneil Fernandes©2005

Performance and Storage Considerations

e Key compression leads to

A huge saving in space (stores more keys in each index block)
Less I/0 and
Better performance.

Increase in the CPU time required to reconstruct the key column values
during an index scan.

It also incurs some additional storage overhead, because every prefix
entry has an overhead of 4 bytes associated with it.

Macneil Fernandes©2005

Implementing Key Compression

* Key compression can be useful in the following situations:

* For a non-unique index to which ROWID is appended to make the key unique.
The duplicate key is stored as a prefix entry on the index block without the
ROWID. The remaining rows become suffix entries consisting of only the ROWID.

e For a unique multi-column index.

* Enable key compression using the COMPRESS clause. The prefix length (as the
number of key columns) can also be specified to identify how the key columns
are broken into a prefix and suffix entry.

CREATE INDEX emp ename ON emp (ename)
TABLESPACE users
COMPRESS 1;

» The COMPRESS clause can also be specified during rebuild. For example,
during rebuild you can disable compression as follows:
ALTER INDEX emp ename REBUILD NOCOMPRESS;

Macneil Fernandes©2005

Bitmap Indexes

Macneil Fernandes©2005

Bitmap Indexes

e In a bitmap index, a bitmap for each key value is used instead of a
list of rowids.

e Each bit in the bitmap corresponds to a possible rowid.

e If the bit is set, then it means that the row with the corresponding
rowid contains the key value.

* A mapping function converts the bit position to an actual rowid, so
the bitmap index provides the same functionality as a regular
index even though it uses a different representation internally.

Macneil Fernandes©2005

Bitmap Indexes

 The advantages of using bitmap indexes are greatest for low
cardinality columns: (i.e. columns in which the number of distinct
values is small compared to the number of rows in the table.)

e If the number of distinct values of a column i1s less than 1% of the
number of rows in the table, or if the values in a column are
repeated more than 100 times, then the column 1s a candidate for a
bitmap index.

e For example,

e On a table with 1 million rows, a column with 10,000 distinct values is a
candidate for a bitmap index.

 Even columns with a lower number of repetitions and thus higher
cardinality can be candidates if they tend to be involved in complex
conditions in the WHERE clauses of queries.

Macneil Fernandes©2005

Bitmap Index Example

e (Consider the Table Given Below:

* From the Table Data we find the low cardinality columns to be:

e MARITAL STATUS (three possible values),
e REGION (three possible values),
e GENDER (two possible values) ,

* Therefore, it 1s appropriate to create bitmap indexes on these

columns.

CUSTOMER # | MARITAL_STATUS REGION | GENDER
101 single east male

102 married central female
103 married west female
104 divorced west male

105 single central female
106 married central female

Macneil Fernandes©2005

Bitmap Index Example

e The Figure below illustrates the Bitmap index for the REGION column in this
example.

» [t consists of three separate bitmaps, one for each region.
e Each entry or bit in the bitmap corresponds to a single row of the CUSTOMER

table.
e The value of each bit depends upon the values of the corresponding row in the
table.
© The bitmap
REGION='east’
contains a one as its first REGION= | REGION= | REGION=
101 single east male bit. This 1s because the ‘east’ ‘central’ ‘west’

- region is east in the \
first row of the
CUSTOMER table. |\®
I/—Q/
The bitmap REGION="east’ /
has a zero for its other bits
because none of the other rows

of the table contain east as
their value for REGION.

HHQOH\/Q\‘
Y

el el el e

Macneil Fernandes©2005

Bitmap Index Example

e Similarly we can represent the Bitmap index for the GENDER
column.

CUSTOMER # | GENDER GENDER | GENDER
= ‘male’ = ‘female’

101 male 1 0

102 female 0 1

103 female 0 1

104 male 1 0

105 female 0 1

106 female 0 1

e Consider the SQL Query:
SELECT COUNT (*) FROM CUSTOMER
WHERE marital status = 'married'
AND region IN ('central', 'west');

Macneil Fernandes©2005

Bitmap Index Example(Executing a Query Using
Bitmap Indexes)

* Bitmap indexes can process this query with great efficiency by
counting the number of ones in the resulting bitmap, as illustrated

below. The rows that

status = region = region = satisfy the criteria

‘married’ ‘central’ ‘west’ of the Query.

\. N 4 \ | —
0 0 0 0 0
1 0 1 1
'] anp or [= ' awm 1 =
0 1 0 1 0
0 0 0 1 0
1 0 1 1

e Result of the Query:
COUNT(¥)

3 Macneil Fernandes©2005

