
Index-Organized Tables

Macneil Fernandes©2005

Introduction
• An index-organized table has a storage organization that is a

variant of a primary B-tree.
• Besides storing the primary key column values of an index-

organized table row, each index entry in the B-tree stores the non-
key column values as well.

• Data for an index-organized table is stored in a B-tree index
structure in a primary key sorted manner.

• Rather than having a row's rowid stored in the index entry, the
non-key column values are stored.
Thus, each B-tree index entry contains
<primary_key_value, non_primary_key_column_values>.

Macneil Fernandes©2005

Introduction

• Applications manipulate the index-organized table just like an
ordinary table, using SQL statements. However, the database
system performs all operations by manipulating the corresponding
B-tree index.

Macneil Fernandes©2005

Benefits of Index-Organized Tables
• Index-organized tables provide faster access to table rows by the

primary key or any key that is a valid prefix of the primary key.
• Presence of non-key columns of a row in the B-tree leaf block itself

avoids an additional block access.
• In order to allow even faster access to frequently accessed columns,

you can use a row overflow storage option to push out infrequently
accessed non-key columns from the B-tree leaf block to an optional
overflow storage area. This allows limiting the size and content of
the portion of a row that is actually stored in the B-tree leaf block,
which may lead to a higher number of rows in each leaf block and a
smaller B-tree.

• Unlike a configuration of ordinary table with a primary key index
where primary key columns are stored both in the table and in the
index, there is no such duplication here because primary key
column values are stored only in the B-tree index.

Macneil Fernandes©2005

Index-Organized Tables with Row Overflow Area

• In index-organized tables, the B-tree index entries can be large,
because they consist of the entire row. This may destroy the dense
clustering property of the B-tree index.

• Oracle provides the OVERFLOW clause to handle this problem. We
can specify an overflow tablespace so that, if necessary, a row can
be divided into the following two parts that are then stored in the
index and in the overflow storage area, respectively:
• The index entry, containing column values for all the primary key columns, a

physical rowid that points to the overflow part of the row, and optionally a
few of the non-key columns,

• The overflow part, containing column values for the remaining non-key
columns

Macneil Fernandes©2005

Index-Organized Tables with Row Overflow Area

• With OVERFLOW, you can use two clauses, PCTTHRESHOLD
and INCLUDING, to control how Oracle determines whether a
row should be stored in two parts and if so, at which non-key
column to break the row.

• Using PCTTHRESHOLD, you can specify a threshold value as a
percentage of the block size. If all the non-key column values can
be accommodated within the specified size limit, the row will not
be broken into two parts. Otherwise, starting with the first non-key
column that cannot be accommodated, the rest of the non-key
columns are all stored in the row overflow storage area for the
table.

• The INCLUDING clause lets you specify a column name so that
any non-key column, appearing in the CREATE TABLE statement
after that specified column, will be stored in the row overflow
storage area.

Macneil Fernandes©2005

Secondary Indexes on Index-Organized Tables

• Secondary index support on index-organized tables provides
efficient access to index-organized table using columns that are not
the primary key nor a prefix of the primary key.

• Oracle constructs secondary indexes on index-organized tables
using logical row identifiers (logical rowids) that are based on the
table’s primary key.

Macneil Fernandes©2005

Bitmap Indexes on Index-Organized Tables
• Oracle9i, Release 1 (9.0.1), supports bitmap indexes on index-

organized tables.
• A mapping table is required for creating bitmap indexes on an

index-organized table.
• The mapping table provides one-to-one mapping between logical

rowids of the index-organized table rows and physical rowids of the
mapping table rows.

• In both heap-organized and index-organized base tables, a bitmap
index is accessed using a search key. If the key is found, the bitmap
entry is converted to a physical rowid. In the case of heap-
organized table, this physical rowid is then used to access the base
table. However, in the case of index-organized table, the physical
rowid is then used to access the mapping table. The access to the
mapping table yields a logical rowid. This logical rowid is used to
access the index-organized table.

Macneil Fernandes©2005

Index-Organized Table Applications
• Online Transaction Processing (OLTP)
• Internet (for example, search engines and portals)
• E-Commerce (for example, electronic stores and catalogs)
• Data Warehousing
• Time-series applications

Macneil Fernandes©2005

