
Indexes

Macneil Fernandes©2005

Indexes

• Indexes are optional structures associated with tables
and clusters.

• You can create indexes on one or more columns of a
table to speed SQL statement execution on that table.

• Oracle index provides a faster access path to table
data.

• Indexes are the primary means of reducing disk I/O
when properly used.

Macneil Fernandes©2005

Indexes(cont..)

• You can create many indexes for a table as long as
the combination of columns differs for each index.

• You can create more than one index using the same
columns if you specify distinctly different
combinations of the columns.

• For example, the following statements specify valid
combinations:
CREATE INDEX emp_idx1 ON emp (ename, job);

CREATE INDEX emp_idx2 ON emp (job, ename);

Macneil Fernandes©2005

Unique and Nonunique Indexes

• Indexes can be unique or nonunique.
• Unique indexes guarantee that no two rows of a table

have duplicate values in the key column (or columns).
• Non-unique indexes do not impose this restriction on the

column values.

Macneil Fernandes©2005

Composite Indexes

• A composite index is an index that you create on multiple
columns in a table.

• Columns in a composite index can appear in any order
and need not be adjacent in the table.

• Composite indexes can speed retrieval of data for
SELECT statements in which the WHERE clause
references all or the leading portion of the columns in the
composite index.

• Therefore, the order of the columns used in the definition
is important.Generally, the most commonly accessed or
most selective columns go first.

Macneil Fernandes©2005

Function Based Indexes

Macneil Fernandes©2005

Function Based Indexes
• A function-based index precomputes the value

of the function or expression and stores it in the index.
• A function-based index can be created as either a B-tree

or a bitmap index.
• The expression cannot contain any aggregate functions,

and it must be DETERMINISTIC.

Macneil Fernandes©2005

Use Of Function Based Index
• Function-based indexes provide an efficient mechanism

for evaluating statements that contain functions in their
WHERE clauses.

• The value of the expression is computed and stored in the
index. When it processes INSERT and UPDATE
statements, however, Oracle must still evaluate the
function to process the statement.

• For example, the following index:
CREATE INDEX uppercase_idx ON emp (UPPER(empname));

can facilitate processing queries such as this:
SELECT * FROM emp WHERE UPPER(empname) =
’RICHARD’;

Macneil Fernandes©2005

How Indexes are Stored.

Macneil Fernandes©2005

How Indexes are stored
• When you create an index, Oracle automatically allocates

an index segment to hold the index’s data.
• The tablespace of an index’s segment is either the owner’s

default tablespace or a tablespace specifically named in
the CREATE INDEX statement.

• You can improve performance of queries that use an index
by storing an index and its table in different tablespaces
located on different disk drives, because Oracle can
retrieve both index and table data in parallel.

Macneil Fernandes©2005

Internal Structure Of Indexes
• Oracle uses B Trees to store indexes to speed up data

access. If there are no indexes then you have to do a
sequential scan on the data to find a value.

Basic principle behind Oracle indexes :
If we had an ordered list of the values, then we could
divide it into block wide ranges (leaf blocks). The end
points of the ranges along with pointers to the blocks could
be stored in a search tree and we could find a value in
log(n) time for nentries. This can be illustrated by the
following diagram :

Macneil Fernandes©2005

Macneil Fernandes©2005

Structure Of Indexes (contd.)
• The upper blocks (branch blocks) of a B-tree index

contain index data that points to lower-level index blocks.
The lowest level index blocks (leaf blocks) contain every
indexed data value and a corresponding rowid used to
locate the actual row. The leaf blocks are doubly linked.

• For a unique index, there is one rowid for each data value.
For a nonunique index, the rowid is included in the key in
sorted order, so nonunique indexes are sorted by the index
key and rowid.

Macneil Fernandes©2005

Index Properties
There are two kinds of blocks :
✑✎ Branch blocks for searching
✒✎ Leaf blocks that store the values
Branch Blocks : Branch blocks store the following:
• The minimum key prefix needed to make a branching

decision between two keys .
• The pointer to the child block containing the key .
Leaf Blocks : Leaf blocks store the following:
• The complete key value for every row
• ROWIDs of the table rows

Macneil Fernandes©2005

Advantage of B-Tree structure
The B-tree structure has the following advantages:
• All leaf blocks of the tree are at the same depth, so

retrieval of any record from anywhere in the index takes
approximately the same amount of time.

• B-tree indexes automatically stay balanced.
• B-trees provide excellent retrieval performance for a wide

range of queries,including exact match and range
searches.

• Inserts, updates, and deletes are efficient, maintaining key
order for fast retrieval.

Macneil Fernandes©2005

How Indexes Are Searched

Macneil Fernandes©2005

Index Unique Scan

• This method is used for returning the data from B-tree indexes.
• The Optimizer chooses a unique scan when all columns of a unique

(B-tree) index are specified with equality conditions.

Macneil Fernandes©2005

Index Unique Scan
Steps in Index Unique Scans
1 Start with the root block.
2 Search the block keys for the smallest key >= value.
3 If key > value, then follow the link before this key to the child block.
4 If key = value, then follow this link to the child block.
5 If there is no key >= value in Step 2, then follow the link after the highest key in

the block.
6 Repeat steps 2 through 4 if the child block is a branch block.
7 Search the leaf block for key equal to the value.
8 If key is found, then return the ROWID. If key is not found, then the row does

not exist.

Macneil Fernandes©2005

Index Unique Scan
If searching for Patrick:
• In the root block, Rh is the

smallest key >= Patrick.
• Follow the link before Rh to

branch block (Mo, P, Ph).
• In this block, Ph is the

smallest key >= Patrick.
• Follow the link before Ph to

leaf block (Pablo, Patrick,
Paula, Peter).

• In this block, search for key
Patrick = Patrick.

• Found Patrick = Patrick,
return (KEY, ROWID).

Macneil Fernandes©2005

Index Unique Scan
If searching for Meg:
• In the root block, Rh is the

smallest key >= Meg.
• Follow the link before Rh to

branch block (Mo, P, Ph).
• In this block, Mo is the

smallest key >= Meg.
• Follow the link before Mo to

leaf block (Luis,… , May,
Mike).

• In this block, search for key =
Meg.

• Did not find key = Meg,
return 0 rows.

Macneil Fernandes©2005

Index Range Scan
• Index range scan is a common operation for accessing selective

data. It can be bounded (bounded on both sides) or unbounded (on
one or both sides).

• Specify an equality condition.
• order_id = 100 - start key = 100, end key = 100

• Specify an interval bounded by start key and end key.
• order_id BETWEEN 100 AND 120 - start key = 100, end key = 120

• Specify just a start key or an end key (unbounded range scan).
• order_id >= 100
• order_id <= 100

Macneil Fernandes©2005

Index Range Scan
Steps in a Bounded Range Scan
1. Start with the root block.
2. Search the block keys for the smallest key >= start key.
3. If key > start key, then follow the link before this key to the child block.
4. If key = start key, then follow this link to the child block.
5. If there is no key >= start key in Step 2, then follow the link after the

highest key in the block.
6. Repeat steps 2 through 4 if the child block is a branch block.
7. Search the leaf block keys for the smallest key greater than or equal to the

start key.
8. While key <= end key:

• If the key columns meet all WHERE clause conditions, then return the (value,
ROWID).

• Follow the link to the right.

Macneil Fernandes©2005

Index Range Scan

• Range scans bounded on the left (unbounded on the right) start the
same as above. However, they do not check for the end point. They
continue until they reach the right-most leaf key.

• Range scans bounded on the right traverse the index tree to the left-
most leaf key and then follow step #6 and # 7 until they reach a key
greater then the specified condition.

Macneil Fernandes©2005

Index Range Scan
If searching for Nancy:
• Start key = ‘Nancy’, end key =

‘Nancy’.
• In the root block, Rh is the

smallest key >= start key.
• Follow the link before Rh to

branch block (N, P, Ph).
• In this block, P is the smallest

key >= start key.
• Follow the link before P to leaf

block (Nancy, …, Nicole,
Norm).

• In this block, Nancy is the
smallest key >= start key.

Macneil Fernandes©2005

Topic One
• Because Nancy <= end key,

return the (KEY, ROWID).
• Next key Nancy <= end key,

return the (KEY, ROWID).
• Next key Nancy <= end key,

return the (KEY, ROWID).
• Next key Nicole > end key,

terminate the range scan.

Macneil Fernandes©2005

Index Range Scan
If searching for ‘P%’:
• Start key = ‘P’, end key = ‘Q’.
• In the root block, Rh is the

smallest key >= start key.
• Follow the link before Rh to

branch block (N, P, Ph).
• In this block, P is the smallest

key = start key.
• Follow this link to leaf block

(Pablo,…, Peter).
• In this block, Pablo is the

smallest key >= start key.

Macneil Fernandes©2005

Index Range Scan
• Because Pablo <= end key,

return the (KEY, ROWID).
• Next key Paula <= end key,

return the (KEY, ROWID).
• Next key Paula <= end key,

return the (KEY, ROWID).
• Next key Phil <= end key,

return the (KEY, ROWID).
• Next key Pierre <= end key,

return the (KEY, ROWID).
• Next key Rachel > end key,

terminate the range scan.

Macneil Fernandes©2005

Reverse key Indexes

Macneil Fernandes©2005

Reverse key Indexes
• Creating a reverse key index, compared to a standard index,

reverses the bytes of each column indexed (except the rowid) while
keeping the column order.

• It helps to avoid performance degradation.
• By reversing the keys of the index, the insertions become

distributed across all leaf keys in the index.
• Usage of the reverse key arrangement eliminates the ability to run

an index range scanning query on the index. Because lexically
adjacent keys are not stored next to each other in a reverse-key
index, only fetch-by-key or full-index (table) scans can be
performed.

Macneil Fernandes©2005

Reverse key Indexes
• The REVERSE keyword provides a simple mechanism for creating

a reverse key index.
• For example :

• CREATE INDEX i ON t (a,b,c) REVERSE;
• You can specify the keyword NOREVERSE to REBUILD a

reverse-key index into one that is not reverse keyed:
• For example :

• ALTER INDEX i REBUILD NOREVERSE;

• Rebuilding a reverse-key index without the NOREVERSE keyword
produces a rebuilt, reverse-key index.

Macneil Fernandes©2005

Key Compression

Macneil Fernandes©2005

Key Compression
• Key compression enables compression of portions of the key

column values in an index.
• This reduces the storage overhead of repeated values.
• Keys in an index have two pieces

• a grouping piece(Repeating part of the key)
• a unique piece.(If the key is not defined to have a unique piece, Oracle

provides one in the form of a rowid appended to the grouping piece.)
• Key compression is a method of breaking off the grouping piece

and storing it so it can be shared by multiple unique pieces.

Macneil Fernandes©2005

Prefix and Suffix Entries
• Key compression breaks the index key into a prefix entry (the grouping piece)

and a suffix entry (the unique piece).
• Compression is achieved by sharing the prefix entries among the suffix entries

in an index block.
• For example,

• In a key made up of three columns (column1, column2, column3) the default
prefix is (column1, column2). For a list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5),
(1,3,4), (1,4,4) the repeated occurrences of (1,2), (1,3) in the prefix are
compressed.

• Also one can specify the length of the prefix, (i.e. number of columns to be
included in the prefix.)

• For example,
• If you specify prefix length 1, then the prefix is column1 and the suffix is

(column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7),(1,3,5), (1,3,4),
(1,4,4) the repeated occurrences of 1 in the prefix are compressed.

Macneil Fernandes©2005

Performance and Storage Considerations
• Key compression leads to

• A huge saving in space (stores more keys in each index block)
• Less I/O and
• Better performance.
• Increase in the CPU time required to reconstruct the key column values

during an index scan.

Macneil Fernandes©2005

Implementing Key Compression
• Key compression can be useful in the following situations:

• For a non-unique index to which ROWID is appended to make the key unique.
The duplicate key is stored as a prefix entry on the index block without the
ROWID. The remaining rows become suffix entries consisting of only the ROWID.

• For a unique multi-column index.
• Enable key compression using the COMPRESS clause. The prefix length (as the

number of key columns) can also be specified to identify how the key columns
are broken into a prefix and suffix entry.

CREATE INDEX emp_ename ON emp(ename)
COMPRESS 1;

• The COMPRESS clause can also be specified during rebuild. For example,
during rebuild you can disable compression as follows:

ALTER INDEX emp_ename REBUILD NOCOMPRESS;

Macneil Fernandes©2005

Bitmap Indexes

Macneil Fernandes©2005

Bitmap Indexes
• In a bitmap index, a bitmap for each key value is used instead of a

list of rowids.
• Each bit in the bitmap corresponds to a possible rowid.
• If the bit is set, then it means that the row with the corresponding

rowid contains the key value.
• A mapping function converts the bit position to an actual rowid, so

the bitmap index provides the same functionality as a regular
index even though it uses a different representation internally.

Macneil Fernandes©2005

Bitmap Indexes
• The advantages of using bitmap indexes are greatest for low

cardinality columns: (i.e. columns in which the number of distinct
values is small compared to the number of rows in the table.)

• If the number of distinct values of a column is less than 1% of the
number of rows in the table, or if the values in a column are
repeated more than 100 times, then the column is a candidate for a
bitmap index.

• For example,
• On a table with 1 million rows, a column with 10,000 distinct values is a

candidate for a bitmap index.
• Even columns with a lower number of repetitions and thus higher

cardinality can be candidates if they tend to be involved in complex
conditions in the WHERE clauses of queries.

Macneil Fernandes©2005

Bitmap Index Example
• Consider the Table Given Below:
• From the Table Data we find the low cardinality columns to be:

• MARITAL_STATUS (three possible values),
• REGION(three possible values),
• GENDER(two possible values),

• Therefore, it is appropriate to create bitmap indexes on these
columns.

CUSTOMER # MARITAL_STATUS REGION GENDER

101 single east male
102 married central female
103 married west female
104 divorced west male
105 single central female
106 married central female

Macneil Fernandes©2005

Bitmap Index Example
• The Figure below illustrates the Bitmap index for the REGION column in this

example.
• It consists of three separate bitmaps, one for each region.
• Each entry or bit in the bitmap corresponds to a single row of the CUSTOMER

table.
• The value of each bit depends upon the values of the corresponding row in the

table.

010
010
100
100
010
001

REGION=
’west’

REGION=
’central’

REGION=
’east’

The bitmap
REGION=’east’
contains a one as its first
bit. This is because the
region is east in the
first row of the
CUSTOMER table.

The bitmap REGION=’east’
has a zero for its other bits
because none of the other rows
of the table contain east as
their value for REGION.

maleeastsingle101

Macneil Fernandes©2005

Bitmap Index Example
• Similarly we can represent the Bitmap index for the GENDER

column.

GENDER
= ‘male’

GENDER
= ‘female’

1 0
0 1
0 1
1 0
0 1
0 1

• Consider the SQL Query:
SELECT COUNT(*) FROM CUSTOMER
WHERE marital_status = 'married'
AND region IN ('central','west');

CUSTOMER #

101
102
103
104
105
106

GENDER

male
female
female
male
female
female

Macneil Fernandes©2005

Bitmap Index Example(Executing a Query Using
Bitmap Indexes)
• Bitmap indexes can process this query with great efficiency by

counting the number of ones in the resulting bitmap, as illustrated
below.
status =

‘married’
region =
‘central’

region =
‘west’

The rows that
satisfy the criteria

of the Query.

• Result of the Query:
COUNT(*)

3 Macneil Fernandes©2005

Bitmap Join Indexes

Macneil Fernandes©2005

Bitmap Join Indexes

• The bitmap join index,is a bitmap index on a table F
based on columns from table D1,...,Dn, where Di
joins with F in a star or snowflake schema.

• Table F is usually a fact table, table Di is usually a
dimension table, and the join condition is a join between
the primary key column(s) of the dimension tables and the
foreign key column(s) in the fact table.

• Bitmap join indexes are much more efficient in storage
than materialized join views which do not compress
rowids of the fact tables.

Macneil Fernandes©2005

Four Join Models
The following is a description of four join models in the star query

framework and how they are addressed by bitmap join indexes.
Notation:
Fi -- Fact table i
Di -- Dimension table i
pk -- The primary key column on the dimension table
fk -- The fact table column participating in the join with the

dimension tables(foreign key).
sales -- The measurement column on the fact table

Macneil Fernandes©2005

One dimension table column joins with one fact table

•The model shown above is a bitmap join index on F(D.c1), can
be represented by the following SQL statement:
CREATE BITMAP INDEX bji ON f (d.c1) FROM f, d WHERE
d.pk = f.fk

Macneil Fernandes©2005

Then the following query

select sum(f.sales) from d, f

where d.pk = f.fk and d.c1 = 2;

can be executed by accessing the bitmap join index to avoid the join operation.

Macneil Fernandes©2005

Two or more dimension table columns join with one fact table

Above figure shows a simple extension of the previous model, requiring
a concatenated bitmap join index to represent it, as follows:
CREATE BITMAP INDEX bji ON f (d.c1, d.c2) FROM F, d WHERE
d.pk = f.fk;

Macneil Fernandes©2005

The result of the following query:
select sum(f.sales) from d, f

where d.pk = f.fk and d.c1 = 1 and d.c2 = 3;

can be retrieved by accessing the bitmap join index bji.

Another query which references only the leading portion of
the index key can also use bitmap join index bji:

select sum(f.sales) from d, f

where d.pk = f.fk and d.c1 = 1;

Macneil Fernandes©2005

Multiple dimension tables join with one fact table

Above figure shows the third model, which requires a concatenated
bitmap join index:
CREATE BITMAP INDEX bji ON f (d1.c1, d2.c2) FROM f, d1, d2

WHERE d1.pk = f.fk1 and d2.pk = f.fk2

Macneil Fernandes©2005

Snow Flake Schema

• The above model involves joins between two or more dimension tables.
• A bitmap join index on d1.c3 with a join between d1 and d2 and a join

between d2 and f can be created as follows:
CREATE BITMAP INDEX bji

ON f (d1.c3) FROM f, d1, d2

WHERE d1.pk = d2.c2 and d2.pk = f.fk;
Macneil Fernandes©2005
Macneil Fernandes©2005

