EXPLAIN PLAN

Understanding EXPLAIN PLAN

« The EXPLAIN PLAN statement displays execution plans chosen
by the Oracle optimizer for SELECT, UPDATE, INSERT, and
DELETE statements.

« A statement’s execution plan is the sequence of operations Oracle
performs to run the statement.

 The row source tree 1s the core of the execution plan. It shows the
following information:
* An ordering of the tables referenced by the statement
* An access method for each table mentioned in the statement
* A join method for tables affected by join operations in the statement

* Data operations like filter, sort, or aggregation

Macneil Fernandes©2005

Understanding EXPLAIN PLAN

In addition to the row source tree, the plan table contains
information about the following:

» Optimization, such as the cost and cardinality of each operation

» Partitioning, such as the set of accessed partitions

» Parallel execution, such as the distribution method of join inputs
e The EXPLAIN PLAN results let you determine whether the
optimizer selects a particular execution plan

It also helps you to understand the optimizer decisions and explains
the performance of a query.

 When evaluating a plan, examine the statement’s actual resource

consumption. Use Oracle Trace or the SQL trace facility and
TKPROF to examine individual SQL statement performance.

Macneil Fernandes©2005

Creating the PLAN_TABLE Output Table

* Before 1ssuing an EXPLAIN PLAN statement, you must have a
table to hold 1t’s output.

e Use the SQL script UTLXPLAN.SQL to create a sample output
table called PLAN TABLE 1n your schema.

e PLAN TABLE 1s the default table into which the EXPLAIN
PLAN statement inserts rows describing execution plans.

« With multiple statements, you can specify a statement identifier and
use that to 1dentify your specific execution plan.

* You can specify the INTO clause to specify a different table.

* For example:
EXPLAIN PLAN
INTO my plan table
SET STATEMENT ID = 'badl' FOR
SELECT name FROM emp;

Macneil Fernandes©2005

EXPLAIN PLAN Restrictions

* Oracle does not support EXPLAIN PLAN for statements
performing implicit type conversion of date bind variables.

« With bind variables in general, the EXPLAIN PLAN output might
not represent the real execution plan.

Macneil Fernandes©2005

PLAN TABLE Columns

Column Type Description

STATEMENT 1D VARCHAR2 (30) The value of the optional STATEMENT ID parameter specified in the
EXPLAIN PLAN Statement.

TIMESTAMP DATE The date and time when the EXPLAIN PLAN staterment was issued.

REMARKS VARCHER2(80) Any comment (of up to 80 bytes) you want to associate with each step
of the explained plan. If you need to add or change a remark on any
row of the PLAN_ TABLE, then use the UPDATE statement to modlify the
rows of the PLAN_TABLE.

OPBRATICN VARCHAR2 (30) The name of the internal operation performed in this step. In the first
row generated for a statement, the column contains one of the
following values:

DELETE STATEMENT

INSERT STATEMENT
SELECT STATEMENT

UFDATE STATEMENT

Macneil Fernandes©2005

PLAN TABLE Columns

OPTIONS

CBJBCT NODE

CEJECT OWNER

CBJRCT MAME

CBJECT INSTANCE

CBJBCT TYPE

VARCHAR2 (225

VARCHAR2 (128)

VARCHAR2 (30

VARCHAR2 (30

NUMERIC

VARCHAR2 (30

A variation on the operation described in the OPERATION column.

See Table 9-4 for more information on values for this column.

The name of the database link used to reference the object (a table
name or view name). For local queries using parallel execution, this
column describes the order in which output from operations is
consumed.

The name of the user who owns the schema containing the table or
inclex.

The name of the table or index,

A number corresponding to the ordinal position of the object as it
appears in the original statement. The numbering proceeds from left to
right, outer to inner with respect to the orlginal statement text. View
expansion results in unpredictable numbers.

A modifier that provides descriptive information about the object; for
example, NON-UNIQUE for indexes.

Macneil Fernandes©2005

PLAN TABLE Columns

OPTIMIZER
SEARCH COLUMNG

D
PARRNT ID

FOSITION

QET

VARCHAR2 (255) The current mode of the optimizer.

NUMBERIC

NUMERIC
NUMERIC

NUMERIC

NUMERIC

Not currently used.

A number assigned to each step in the execution plan,

The ID of the next execution step that operates on the output of the ID
step.

For the first row of output, this indicates the optimizer's estimated cost
of executing the statement. For the other rows, it indlicates the position
relative to the other children of the same parent.

The cost of the operation as estimated by the optimizer’s cost-based
approach. For statements that use the rule-based approach, this
column is null. Cost is not determined for table access operations, The
value of this column does not have any particular unit of
measurement; it is merely a weighted value used to compare costs of
execution plans. The value of this column is a function of the CPU_
cosTand I0_COST columns.

Macneil Fernandes©2005

PLAN TABLE Columns

CARDINALITY NUMERIC The estimate by the cost-based approach of the number of rows
accessed by the operation.

BYTES NUMERIC The estimate by the cost-based approach of the number of bytes
accessed by the operation.

OTHER TAG VARCHAR2 (255) Describes the contents of the OTHER column. See Table 9-2 for more
information on the possible values for this column.

PARTITION START VARCHAR2(255) The start partition of a range of accessed partitions. It can take one of
the following values:

1 indicates that the start partition has been identified by the SQL
compiler, and its partition number is given by n.

KBY indicates that the start partition will be identified at run time from
partitioning key values.

ROW LOCATION indlicates that the start partition (same as the stop
partition) will be computed at run time from the location of each
record being retrieved. The record location is obtained by a user or
from a global index.

INVALID indicates that the range of accessed partitions is empty.
Macneil Fernandes©2005

PLAN TABLE Columns

PARTITION STOP VARCHAR2 (255) The stop partition of a range of accessed partitions. It can take one of
the following values:

nindicates that the stop partition has been identified by the SQL
compiler, and its partition number is given by n.

KEY indicates that the stop partition will be identified at run time from
partitioning key values.

ROW LOCATION indicates that the stop partition (same as the start
partition) will be computed at run time from the location of each
record being retrieved. The record location is obtained by a user or
from a global index.

INVALID indicates that the range of accessed partitions is empty.

PARTITION ID NUMERIC The step that has computed the pair of values of the PARTITION
START and PARTITION STCP columns.

OTHER LCNG Other information that is specific to the execution step that a user
might find useful.

DISTRIBUTION VARCHAR2 (30) Stores the method used to distribute rows from producer query servers
Lo consumer query servers,

See Table 9-3 for more information on the possible values for this
column. For more information about consumer and producer query

servers, see Oracledi Database Concepts.
Macneil Fernandes©2005

PLAN TABLE Columns

CFU_COST

IO COST

TEMP SPACE

NUMERIC

NUMERIC

NUMERIC

The CPU cost of the operation as estimated by the optimizer's
cost-based approach. For statements that use the rule-based

approach, this column is null. The value of this column is proportional
to the number of machine cycles required for the operation.

The 170 cost of the operation as estimated by the optimizer's
cost-based approach. For statements that use the rule-based approach,
this column is null. The value of this column is proportional to the
number of data blocks read by the operation.

The temporary space, in bytes, used by the operation as estimated by
the optimizer's cost-based approach. For statements that use the
rule-based approach, or for operations that don't use any temporary
space, this column is null.

Macneil Fernandes©2005

Values of OTHER_TAG Column of the
PLAN_TABLE

OTHER_TAG Text
(examples)

Meaning

Interpretation

blank

SERIAL FROM REMOTE
(S -> R)

SERIAL TO PRRALLEL
(S -> P)

PARALLEL TO PRRALLEL
(P - > P)

PARALLEL TO SERIAL
(P -> 8)

PARALLEL CCMBINED WITH.

PARENT
(EVIP)

PARALLEL COVBINED WITH.
CHILD
(FWIC)

Serial from remote

Serial to parallel

Parallel to parallel

Parallel to serial

Parallel combined
with parent

Parallel combined
with child

Serial execution.

Serial execution at a remote site,

Serial execution; output of step is partitioned or broadcast
to parallel execution servers.

Parallel execution: output of step is repartitioned to
second set of parallel execution servers,

Parallel execution: output of step is returned to serial
"query coordinator” process.

Parallel execution: output of step goes to next step in same
parallel process. No interprocess communication to
parent.

Parallel execution: input of step comes from prior step in
same parallel process. No interprocess communication
from child.

W, '] F l @eees
1VE

Values of DISTRIBUTION Column of the
PLAN TABLE

DISTRIBUTION Text Interpretation

PARTITION (ROWID) Maps rows to query servers based on the partitioning of a table or index using the
rowid of the row to UPDATE/DELETE.

PARTITION (KEY) Maps rows to query servers based on the partitioning of a table or index using a set of

columns. Used for partial partition-wise join, PARALLEL INSERT, CREATE TABLE AS
SELECT of a partitioned table, and CREATE PART ITIONED GLOBAL INDEX.

HASH Maps rows to query servers using a hash function on the join key. Used for PARALLEL
JOIN or PARALLEL GRCUP BY.

RANGE Maps rows to query servers using ranges of the sort key. Used when the statement
contains an ORDER BY clause.

ROUND-ROBIN Randomly maps rows to query servers,

BROADCAST Broadcasts the rows of the entire table to each query server. Used for a parallel join

when one table is very small compared to the other.

QC (ORDER) The query coordinator consumes the input in order, from the first to the last query
server. Used when the statement contains an ORDER BY clause,

QC (RENDOM) The query coordinator consumes the input randomly. Used when the statement does
not have an ORDER BY clause. Macneil Fernandes©2005

OPERATION and OPTION Values Produced by

EXPLAIN PLAN

Operation

Option

Description

AND-EQUAL

CCNVERSION

INDEX

MERGE

MINUS

CR

Operation accepting multiple sets of rowids, returning the intersection of
the sets, eliminating duplicates. Used for the single-column indexes
access path.

TO ROWIDS converts bitmap representations to actual rowids that can be
used to access the table.

FROM ROWIDS converts the rowids to a bitmap representation.

COUNT returns the number of rowids if the actual values are not needed.

SINGLE VALUE looks up the bitmap for a single key value in the index.
RANGE SCAN retrieves bitmaps for a key value range.

FULL SCAN performs a full scan of a bitmap index if there is no start or
stop key.

Merges several bitmaps resulting from a range scan into one bitmap.

Subtracts bits of one bitmap from another. Row source is used for negated
predicates. Can be used only if there are nonnegated predicates yielding a
bitmap from which the subtraction can take place. Anexample appears in
"Viewing Bitmap Indexes with EXPLAIN PLAN" on page 9-10.

Computes the bitwise OR of two bitmaps. Macneil Fernandes©2005

OPERATION and OPTION Values Produced by
EXPLAIN PLAN

CCECT BY Retrieves rows in hierarchical order for a query containing a CONNECT BY
clause.

CONCATENATION Operation accepting multiple sets of rows returning the union-all of the
SeLs.

CCUNT Operation counting the number of rows selected from a table.

STORKEY Count operation where the number of rows returned is limited by the
ROWNUM expression in the WHERE clause.

DCMAIN INDEX Retrieval of one or more rowids from a domain index. The options
column contain information supplied by a user-defined domain index
cost function, if any.

FILTER Operation accepting a set of rows, eliminates some of them, and returns
the rest.
FIRST ROW Retrieval of only the first row selected by a query.

Macneil Fernandes©2005

OPERATION and OPTION Values Produced by
EXPLAIN PLAN

FOR UPDATE

HASH JOIN

(These are join
operations.)

INDEX

(These are access
methods.)

INLIST ITERRTCR

INTERSECTION

ANTI

SEMI

UNICUE SCAN

RANGE SCAN

RANGE SCAN
DESCENDING

Operation retrieving and locking the rows selected by a query containing
a FOR UPDATE clause.

Operation joining two sets of rows and returning the result.

Hash anti-join.

Hash semi-join.

Retrieval of a single rowid from an index.

Retrieval of one or more rowids from an index. Indexed values are
scanned in ascending order.

Retrieval of one or more rowids from an index. Indexed values are
scanned in descending order,

[terates over the operation below it for each value in the TN-list predicate.

Operation accepting two sets of rows and returning the intersection of the
sets, eliminating duplicates.
Macneil Fernandes©2005

OPERATION and OPTION Values Produced by

EXPLAIN PLAN

MERGE JOIN

(T'hese are join
operations.)

ANTI
SEMI

CCNNECT BY

MINUS

NESTED LOOPS

(T'hese are join

operations.)

PARTITION SINGLE
ITERATOR
ALL

Operation accepting two sets of rows, each sorted by a specific value,
combining each row from one set with the matching rows from the other,
and returning the result.

Merge join operation to perform anouter join statement.
Merge anti-join.
Merge semi-join.

Retrieval of rows in hierarchical order for a query containing a CONNECT
BY clause.

Operation accepting two sets of rows and returning rows appearing in
the first set but not in the second, eliminating duplicates.

Operation accepting two sets of rows, an outer set and an inner set.
Oracle compares each row of the outer set with each row of the inner set,
returning rows that satisfy a condition.

Nested loops operation to perform an outer join statement.

Access one partition.
Access many partitions (a subset).

Access all pa rtitions. Macneil Fernandes©2005

OPERATION and OPTION Values Produced by
EXPLAIN PLAN

INLIST Similar to iterator, but based on an IN-list predicate.
INVALID [Indicates that the partition set to be accessed is empty.

[terates over the operation below it for each partition in the range given
by the PARTI TION START and PART ITICN STOP columns.

PARTITION describes partition boundaries applicable to a single
partitioned object (table or index) or to a set of equi-partitioned objects (a
partitioned table and its local indexes). The partition boundaries are
provided by the values of PARTITION START and PARTITION STOP of
the PARTITION. Refer to Table 9-1 for valid values of partition start/stop.

REMOTE Retrieval of data from a remote database.
SBCUENCE Operation involving accessing values of a sequence.
SORT AGGREGATE Retrieval of a single row that is the result of applying a group function to
a group of selected rows.
UNICUE Operation sorting a set of rows to eliminate duplicates.
GRCUP BY Operation sorting a set of rows into groups for a query with a GROUP BY
clause.
JOIN Operation sorting a set of rows before a merge-join.

ORDER BY Operation sorting a set of rows for a query with an ORDER BY clause.
‘ ' Macneil Fernandes©2005

OPERATION and OPTION Values Produced by
EXPLAIN PLAN

—

TABLE ACCESS FULL Retrieval of all rows from a table.

N SAMPLE Retrieval of sampled rows from a table.

(These are access

methods.) CLIJSTER Retrieval of rows from a table based on a value of an indexed cluster key.
HASH Retrieval of rows from table based on hash cluster key value.

BY ROWID Retrieval of rows from a table based on a rowid range.

RANGE

SaMPLE BY Retrieval of sampled rows from a table based on a rowid range.
RCWID RANGE

BY USER If the table rows are located using user-supplied rowids.

RCWID

BY INDEX [f the table is nonpartitioned and rows are located using index(es).
RCWID

BY GLOBAL If the table is partitioned and rows are located using only global indexes.
INDEX ROWID

Macneil Fernandes©2005

OPERATION and OPTION Values Produced by

EXPLAIN PLAN

BY LOCAL
INDEX ROWID

UNICHN

VIEW

[f the table is partitioned and rows are located using one or more local
indexes and possibly some global indexes.

Partition Boundaries:
The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION START and
PARTITION STOP column values replicate the values present in the
PARTITION step, and the PARTITION ID contains the ID of the
PARTITION step. Possible values for PARTITION START and
PARTITION STOP are NUMBER(n). KEY, INVALID.

The TABLE ACCESS or INDEX step itself, in which case the PARTITION
ID contains the ID of the step. Possible values for PARTITION START
and PARTITION STOP are NUMBER(n), KBY, ROW LOCATION (TABLE
ACCESS only), and INVALID.

Operation accepting two sets of rows and returns the union of the sets,
eliminating duplicates.

Operation performing a view’s query and then returning the resulting
rows to another operation.

Macneil Fernandes©2005

