
DataTypes

Macneil Fernandes©2005

Introduction to Oracle DataTypes
When you create a table, you must specify a datatype for each of its columns.
Oracle provides the following built-in datatypes:
• Character Datatypes

– CHAR Datatype
– VARCHAR2 and VARCHAR Datatypes
– NCHAR and NVARCHAR2 Datatypes
– LONG Datatype

• NUMBER Datatype
• DATE Datatype
• LOB Datatypes

– BLOB Datatype
– CLOB and NCLOB Datatypes
– BFILE Datatype

Macneil Fernandes©2005

Introduction to Oracle Datatypes(contd.)
• RAW and LONG RAW Datatypes
• ROWID and UROWID Datatypes

– Physical Rowids
– Logical Rowids

Macneil Fernandes©2005

Character Datatypes

• The character datatypes store character (alphanumeric) data in
strings, with byte values corresponding to the character encoding
scheme, generally called a character set or code page.

• The database’s character set is established when you create the
database. Examples of character sets are 7-bit ASCII (American
Standard Code for Information Interchange), EBCDIC (Extended
Binary Coded Decimal Interchange Code), Code Page 500, Japan
Extended UNIX, and Unicode UTF-8.

Macneil Fernandes©2005

CHAR Datatype
• The CHAR datatype stores fixed-length character strings. When

you create a table with a CHAR column, you must specify a string
length (in bytes or characters) between 1 and 2000 bytes for the
CHAR column width. The default is 1 byte.

• Oracle then guarantees that:
ØWhen you insert or update a row in the table, the value for the CHAR

column has the fixed length.
Ø If you give a shorter value, then the value is blank-padded to the fixed

length.
Ø If a value is too large, Oracle returns an error.

Macneil Fernandes©2005

VARCHAR2 and VARCHAR Datatypes
• The VARCHAR2 datatype stores variable-length character strings.

When you create a table with a VARCHAR2 column, you specify a
maximum string length (in bytes or characters) between 1 and 4000
bytes for the VARCHAR2 column.

• For each row, Oracle stores each value in the column as a variable-
length field unless a value exceeds the column’s maximum length, in
which case Oracle returns an error.

• Using VARCHAR2 and VARCHAR saves on space used by the
table.For example, assume you declare a column VARCHAR2 with a
maximum size of 50characters. In a single-byte character set, if only
10 characters are given for the VARCHAR2 column value in a
particular row, the column in the row’s row piece stores only the 10
characters (10 bytes), not 50.

• The VARCHAR datatype is synonymous with the VARCHAR2
datatype.

Macneil Fernandes©2005

NCHAR and NVARCHAR2 Datatypes
• NCHAR and NVARCHAR2 are Unicode data types that store

Unicode character data.
• The character set of NCHAR and NVARCHAR2 datatypes can only

be either AL16UTF16 or UTF8 and is specified at database
creation time as the national character set.

• AL16UTF16 and UTF8 are both Unicode encoding.
• The NCHAR datatype stores fixed-length character strings that

correspond to the national character set.
• The NVARCHAR2 datatype stores variable length character strings.

Macneil Fernandes©2005

LONG Datatype
• Long Datatype is used to store large amounts of character data .
• The LONG datatype is provided for backward compatibility with

existing applications.
• In new applications, we use CLOB and NCLOB datatypes.

Macneil Fernandes©2005

LOB Datatypes
• The LOB datatypes BLOB, CLOB, NCLOB, and BFILE

enable you to store large blocks of unstructured data (such as text,
graphic images, video clips, and sound waveforms) up to 4
gigabytes in size.

• BLOB Datatype
The BLOB datatype stores unstructured binary data in the database.
BLOBs can store up to 4 gigabytes of binary data.

• CLOB and NCLOB Datatypes
The CLOB and NCLOB datatypes store up to 4 gigabytes of
character data in the database. CLOBs store database character set
data and NCLOBs store Unicode national character set data.

Macneil Fernandes©2005

LOB Datatypes(contd.)
BFILE Datatype
• The BFILE datatype stores unstructured binary data in operating-

system files outside the database.
• A BFILE column or attribute stores a file locator that points to an

external file containing the data.
• BFILEs can store up to 4 gigabytes of data.
• BFILEs are read-only; you cannot modify them.
• The database administrator must ensure that the file exists and that

Oracle processes have operating-system read permissions on the
file.

Macneil Fernandes©2005

Number DataType
• The NUMBER datatype stores fixed and floating-point numbers.

Numbers of virtually any magnitude can be stored and are
guaranteed portable among different systems operating Oracle, up
to 38 digits of precision.

• For numeric columns, you can specify the column as:
column_name NUMBER

• Optionally, you can also specify a precision (total number of digits)
and scale (number of digits to the right of the decimal point):

column_name NUMBER (precision, scale)

• If a precision is not specified, the column stores values as given. If
no scale is specified, the scale is zero.

Macneil Fernandes©2005

Number Datatype(contd.)
• Oracle guarantees portability of numbers with a precision equal to

or less than 38 digits. You can specify a scale and no precision:
column_name NUMBER (*, scale)

In this case, the precision is 38, and the specified scale is
maintained.

Macneil Fernandes©2005

DATE DataType
• For input and output of dates, the standard Oracle default date

format is DD-MON-YY
e.g. ’13-NOV-92’

• You can change this default date format for an instance with the
parameter NLS_DATE_FORMAT.

• To enter dates that are not in standard Oracle date format, use the
TO_DATE function with a format mask:
TO_DATE (’November 13, 1992’, ’MONTH DD, YYYY’)

• Oracle stores time in 24-hour format—HH:MI:SS.
• To enter the time portion of a date, use the TO_DATE function

with a format mask indicating the time portion, as in:
INSERT INTO birthdays (bname, bday) VALUES
(’ANDY’,TO_DATE(’13-AUG-66 12:56 A.M.’,’DD-MON-YY
HH:MI A.M.’));

Macneil Fernandes©2005

RAW and LONG RAW Datatypes
• The RAW and LONG RAW datatypes are used for data that is not to be

interpreted (not converted when moving data between different systems) by
Oracle.

• These datatypes are intended for binary data or byte strings. For example, LONG
RAW can be used to store graphics, sound, documents, or arrays of binary data.

• RAW is a variable-length datatype like the VARCHAR2 character datatype,
except Oracle Net Services (which connects user sessions to the instance) and the
Import and Export utilities do not perform character conversion when
transmitting RAW or LONG RAW data.

• In contrast, Oracle Net Services and Import/Export automatically convert CHAR,
VARCHAR2, and LONG data between the database character set and the user
session character set (set by the NLS_LANGUAGE parameter of the ALTER
SESSION statement), if the two character sets are different.

Macneil Fernandes©2005

ROWID and UROWID Datatypes
Oracle uses a ROWID datatype to store the address (rowid) of every row in the
database.
• Physical rowids store the addresses of rows in ordinary tables (excluding

index-organized tables), clustered tables, table partitions and subpartitions,
indexes, and index partitions and subpartitions.

• Logical rowids store the addresses of rows in index-organized tables.

A single datatype called the universal rowid, or UROWID, supports both
logical
and physical rowids, as well as rowids of foreign tables such as non-Oracle tables
accessed through a gateway.

Macneil Fernandes©2005

Physical Rowids
• Physical rowids provide the fastest possible access to a row of a given table.

They contain the physical address of a row (down to the specific block) and allow
you to retrieve the row in a single block access. Oracle guarantees that as long as
the row exists, its rowid does not change.

• Every row in a nonclustered table is assigned a unique rowid that corresponds to
the physical address of a row’s row piece (or the initial row piece if the row is
chained among multiple row pieces). In the case of clustered tables, rows in
different tables that are in the same data block can have the same rowid.

• A row’s assigned rowid remains unchanged unless the row is exported and
imported using the Import and Export utilities. When you delete a row from a
table and then commit the encompassing transaction, the deleted row’s associated
rowid can be assigned to a row inserted in a subsequent transaction.

Macneil Fernandes©2005

A physical rowid datatype has one of two formats:
1. The extended rowid format supports tablespace-relative

data block addresses and efficiently identifies rows in
partitioned tables and indexes as well as nonpartitioned
tables and indexes. Tables and indexes created by an
Oracle8i (or higher) server always have extended rowids.

2. A restricted rowid format is also available for backward
compatibility with applications developed with Oracle7 or
earlier releases.

Macneil Fernandes©2005

Extended Rowids
SELECT ROWID, ename FROM emp WHERE deptno = 20;
can return the following row information:

ROWID ENAME

--
AAAAaoAATAAABrXAAA BORTINS
AAAAaoAATAAABrXAAE RUGGLES
AAAAaoAATAAABrXAAG CHEN
AAAAaoAATAAABrXAAN BLUMBERG

An extended rowid has a four-piece format, OOOOOOFFFBBBBBBRRR:

OOOOOO: The data object number that identifies the database segment
(AAAAao in the example). Schema objects in the same segment, such as a cluster
of tables, have the same data object number.

FFF: The tablespace-relative datafile number of the datafile that contains the
row (file AAT in the example).

Macneil Fernandes©2005

BBBBBB: The data block that contains the row (block AAABrX in
the example). Block numbers are relative to their datafile, not
tablespace. Therefore,two rows with identical block numbers could
reside in two different datafiles of the same tablespace.

RRR: The row in the block.

Macneil Fernandes©2005

Restricted Rowids
• Restricted rowids use a binary representation of the physical address for each row

selected. When queried using SQL*Plus, the binary representation is converted to
a VARCHAR2/hexadecimal representation.

• The following query:
SELECT ROWID, ename FROM emp
WHERE deptno = 30;
can return the following row information:

ROWID ENAME
--
00000DD5.0000.0001 RAVI
00000DD5.0001.0001 SANDEEP
00000DD5.0002.0001 RAJ

Macneil Fernandes©2005

The table shows that a restricted rowid’s ARCHAR2/hexadecimal
representation is in a three-piece format, block.row.file:

1. The data block that contains the row (block DD5 in the example).
Block numbers are relative to their datafile, not tablespace.
Therefore, two rows with identical block numbers could reside in
two different datafiles of the same tablespace.

2. The row in the block that contains the row (rows 0, 1, 2 in the
example). Row numbers of a given block always start with 0.

3. The datafile that contains the row (file 1 in the example). The first
datafile of every database is always 1, and file numbers are unique
within a database.

Macneil Fernandes©2005

Logical Rowids
• Rows in index-organized tables do not have permanent physical

addresses—they are stored in the index leaves and can move within
the block or to a different block as a result of insertions. Therefore
their row identifiers cannot be based on physical addresses.

• Instead, Oracle provides index-organized tables with logical row
identifiers, called logical rowids, that are based on the table’s
primary key. Oracle uses these logical rowids for the construction
of secondary indexes on index-organized tables.

• Each logical rowid used in a secondary index can include a
physical guess, which identifies the block location of the row in the
index-organized table at the time the guess was made; that is, when
the secondary index was created or rebuilt.

Macneil Fernandes©2005

• Oracle can use guesses to probe into the leaf block directly, bypassing the full
key search. This ensures that rowid access of nonvolatile index-organized tables
gives comparable performance to the physical rowid access of ordinary tables.

• In a volatile table, however, if the guess becomes stale the probe can fail, in
which case a primary key search must be performed.
The values of two logical rowids are considered equal if they have the same
primary key values but different guesses.

Guesses in Logical Rowids
When a row’s physical location changes, the logical rowid remains valid even if
it contains a guess, although the guess could become stale and slow down access
to the row. Guess information cannot be updated dynamically. For secondary
indexes on index-organized tables, however, you can rebuild the index to obtain
fresh guesses. Note that rebuilding a secondary index on an index-organized table
involves reading the base table, unlike rebuilding an index on an ordinary table.

Macneil Fernandes©2005

• When you collect index statistics with the DBMS_STATS package
or ANALYZE statement, Oracle checks whether the existing
guesses are still valid and records the percentage of stale/valid
guesses in the data dictionary. After you rebuild a secondary index
(recomputing the guesses), collect index statistics again.

• In general, logical rowids without guesses provide the fastest
possible access for a highly volatile table. If a table is static or if the
time between getting a rowid and using it is sufficiently short to
make row movement unlikely, logical rowids with guesses provide
the fastest access.

Macneil Fernandes©2005

