
Analytic Functions

Macneil Fernandes©2005

Analytic Functions
• Analytic functions compute an aggregate value based on a group of rows.
• They differ from aggregate functions in that they return multiple rows for each group.
• The group of rows is called a window and is defined by the analytic clause.
• For each row, a "sliding" window of rows is defined. The window determines the range of

rows used to perform the calculations for the "current row".
• Window sizes can be based on either a physical number of rows or a logical interval such

as time.
• Analytic functions are the last set of operations performed in a query except for the final

ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are
completed before the analytic functions are processed.

• Therefore, analytic functions can appear only in the select list or ORDER BY clause.
• Analytic functions are commonly used to compute cumulative, moving, centered, and

reporting aggregates.

Macneil Fernandes©2005

Analytic Functions
• The analytic functions enable you to calculate:

• Rankings and percentiles
• Moving window calculations
• Lag/Lead analysis
• First/last analysis
• Linear regression statistics

• Ranking functions include cumulative distributions, percent rank, and N-
tiles.

• Moving window calculations allow you to find moving and cumulative
aggregations, such as sums and averages.

• Lag/lead analysis enables direct inter-row references so you can calculate
period-to-period changes.

• First/last analysis enables you to find the first or last value in an ordered
group.

Macneil Fernandes©2005

Analytic Functions Categories
Type Used for
Ranking Calculating ranks, percentiles, and n-tiles of the values in a result set.

Windowing Calculating cumulative and moving aggregates. Works with these
functions: SUM, AVG, MIN, MAX, COUNT, VARIANCE, STDDEV,
FIRST_VALUE, LAST_VALUE.

Reporting Calculating shares, for example, market share. Works with these
functions: SUM, AVG, MIN, MAX, COUNT, VARIANCE, STDDEV,
RATIO_TO_REPORT.

LAG/LEAD Finding a value in a row a specified number of rows from a current
row.

FIRST/LAST First or last value in an ordered group.

Linear Regression Calculating linear regression and other statistics (slope, intercept, and
so on).

Inverse Percentile The value in a data set that corresponds to a specified percentile.

Hypothetical Rank
& Distribution

The rank or percentile that a row would have if inserted into a specified
data set. Macneil Fernandes©2005

List of Analytic Functions

AVG

CORR
COVAR_POP
COVAR_SAMP

COUNT
CUME_DIST

DENSE_RANK
FIRST
FIRST_VALUE

LAG
LAST

LAST_VALUE

LEAD
MAX
MIN

NTILE
PERCENT_RANK

PERCENTILE_CONT
PERCENTILE_DISC
RANK

RATIO_TO_REPORT
ROW_NUMBER

REGR_ (linear
regression)
functions
STDDEV

STDDEV_POP
STDDEV_SAMP
SUM

VAR_POP
VAR_SAMP

VARIANCE *

Macneil Fernandes©2005

Essential concepts

• Processing Order
Query processing using analytic functions takes place in three stages.
First, all joins, WHERE, GROUP BY and HAVING clauses are performed.
Second, the result set is made available to the analytic functions, and all
their calculations take place.
Third, if the query has an ORDER BY clause at its end, the ORDER BY is
processed to allow for precise output ordering. The processing order is
shown above.

Macneil Fernandes©2005

Essential concepts

• Result Set Partitions
The analytic functions allow users to divide query result sets into groups of
rows called partitions.
Partitions are created after the groups defined with GROUP BY clauses,
so they are available to any aggregate results such as sums and
averages.
Partition divisions may be based upon any desired columns or
expressions.
A query result set may be partitioned into just one partition holding all the
rows, a few large partitions, or many small partitions holding just a few
rows each.

Macneil Fernandes©2005

Essential concepts
• Window

For each row in a partition, you can define a sliding window of data.
This window determines the range of rows used to perform the calculations
for the current row.
Window sizes can be based on either a physical number of rows or a logical

interval such as time.
The window has a starting row and an ending row. Depending on its
definition, the window may move at one or both ends.
For instance, a window defined for a cumulative sum function would have its
starting row fixed at the first row of its partition, and its ending row would slide
from the starting point all the way to the last row of the partition.
In contrast, a window defined for a moving average would have both its
starting and end points slide so that they maintain a constant physical or
logical range.

Macneil Fernandes©2005

Essential concepts
• Current Row

Each calculation performed with an analytic function is based on a current row within
a partition. The current row serves as the reference point determining the start and
end of the window.

For instance, a centered moving average calculation could be defined with a window
that holds the current row, the six preceding rows, and the following six rows. This
would create a sliding window of 13 rows, as shown below.

Macneil Fernandes©2005

Ranking Functions
• A ranking function computes the rank of a record compared to other

records in the dataset based on the values of a set of measures.
• The ranking function are:

• RANK and DENSE_RANK
• CUME_DIST and PERCENT_RANK
• NTILE
• ROW_NUMBER

Macneil Fernandes©2005

RANK and DENSE_RANK
• RANK

RANK calculates the rank of a value in a group of values.
Rows with equal values for the ranking criteria receive the same rank. Oracle then adds the
number of tied rows to the tied rank to calculate the next rank. Therefore, the ranks may not
be consecutive numbers.
As an analytic function, RANK computes the rank of each row returned from a query with
respect to the other rows returned by the query, based on the values of the value_exprs in the
order_by_clause.
The following statement ranks the employees in the sample hr schema within each department
based on their salary and commission.
SELECT…………… RANK() OVER (PARTITION BY department_id
ORDER BY salary DESC,commission_pct) "Rank“ FROM emp;
DEPT LNAME SALARY COMMISSION_PCT Rank
10 Whalen 4400 1
20 Hartstein 13000 1
20 Goyal 6000 2
30 Raphaely 11000 1
30 Khoo 3100 2
30 Baida 2900 3
30 Tobias 2800 4 Macneil Fernandes©2005

RANK and DENSE_RANK
• DENSE_RANK

The DENSE_RANK function computes the rank of a row in an ordered group of rows.
The ranks are consecutive integers beginning with 1. The largest rank value is the number of
unique values returned by the query.
Rank values are not skipped in the event of ties. Rows with equal values for the ranking
criteria receive the same rank.
DENSE_RANK computes the rank of each row returned from a query with respect to the other
rows, based on the values of the value_exprs in the order_by_clause.
The following statement selects details of all employees who work in the HUMAN
RESOURCES or PURCHASING department, and then computes a rank for each unique salary
in each of the two departments.
SELECT……….., DENSE_RANK() OVER (PARTITION BY e.dept_id ORDER BY

e.salary) as drank FROM employees e, departments d
WHERE e.dept_id = d.dept_id AND d.dept_id IN (’30’, ’40’);
DEPT LNAME SALARY DRANK
Purchasing Colmenares 2500 1
Purchasing Himuro 2600 2
Purchasing Tobias 2800 3
Purchasing Baida 2900 4

Macneil Fernandes©2005

CUME_DIST and PERCENT_RANK
• CUME_DIST

CUME_DIST calculates the cumulative distribution of a value in a group of values.The range of
values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the same
cumulative distribution value.
To compute the CUME_DIST of a value x in a set S of size N, you use the formula:
CUME_DIST(x) = number of values in S before and including x in the specified order/ N
CUME_DIST computes the relative position of a specified value in a group of values. For a row
R, assuming ascending ordering, the CUME_DIST of R is the number of rows with values
lower than or equal to the value of R, divided by the number of rows being evaluated (the entire
query result set or a partition).
The following example calculates the salary percentile for each employee in the purchasing
area. For example, 40% of clerks have salaries less than or equal to Himuro.
SELECT ……….,CUME_DIST() OVER (PARTITION BY job_id ORDER BY

salary) AS cume_dist FROM employees WHERE job_id LIKE ’PU%’;
JOB_ID LAST_NAME SALARY CUME_DIST
PU_CLERK Colmenares 2500 .2
PU_CLERK Tobias 2800 .6
PU_CLERK Khoo 3100 1
PU_MAN Raphaely 11000 1

Macneil Fernandes©2005

CUME_DIST and PERCENT_RANK
• PERCENT_RANK

PERCENT_RANK is similar to CUME_DIST, but it uses rank values rather than row counts in
its numerator. Therefore, it returns the percent rank of a value relative to a group of values.
The function is available in many popular spreadsheets. PERCENT_RANK of a row is :

(rank of row in its partition - 1) / (number of rows in the partition - 1)
PERCENT_RANK returns values in the range zero to one. The row(s) with a rank of 1 will

have a PERCENT_RANK of zero.
The following example calculates, for each employee, the percent rank of the employee’s

salary within the department:
SELECT ……..,PERCENT_RANK() OVER (PARTITION BY department_id ORDER BY

salary DESC) AS pr FROM employees ORDER BY pr, salary;
DEPT_ID LAST_NAME SALARY PR
10 Whalen 4400 0
40 Marvis 6500 0
80 Vishney 10500 .176470588
50 Everett 3900 .181818182
30 Khoo 3100 .2
80 Johnson 6200 .941176471
50 Markle 2200 .954545455
50 Philtanker 2200 .954545455
50 Olson 2100 1 Macneil Fernandes©2005

NTILE
NTILE allows easy calculation of tertiles, quartiles, deciles and other common summary

statistics. This function divides an ordered partition into a specified number of groups
called buckets and assigns a bucket number to each row in the partition.

NTILE is a very useful calculation because it lets users divide a data set into fourths, thirds,
and other groupings. The buckets are numbered 1 through expr, and expr must resolve to
a positive constant for each partition.

The number of rows in the buckets can differ by at most 1. The remainder values (the
remainder of number of rows divided by buckets) are distributed one for each bucket,
starting with bucket 1.

The following example divides into 4 buckets the values in the salary column of the
employees table from Department 100. The salary column has 6 values in this department,
so the two extra values (remainder of 6 / 4) are allocated to buckets 1 and 2, therefore
have one more value than buckets 3 or 4.

SELECT …,NTILE(4) OVER (ORDER BY salary DESC) AS quartile FROM
employees WHERE department_id = 100;

LAST_NAME SALARY QUARTILE
Greenberg 12000 1
Faviet 9000 1
Chen 8200 2
Urman 7800 2
Sciarra 7700 3 Macneil Fernandes©2005

ROW_NUMBER
The ROW_NUMBER function assigns a unique number (sequentially, starting from 1, as

defined by ORDER BY) to each row within the partition.
For each department in the sample table employees, the following example assigns numbers

to each row in order of employee’s hire date:
SELECT……, ROW_NUMBER() OVER (PARTITION BY department_id ORDER

BY employee_id) AS emp_id FROM employees;
DEPTID LNAME EMPLOYEE_ID EMP_ID
10 Whalen 200 1
20 Hartstein 201 1
20 Goyal 202 2
30 Raphaely 114 1
30 Khoo 115 2
30 Baida 116 3
30 Tobias 117 4
30 Himuro 118 5
30 Colmenares119 6
40 Marvis 203 1

ROW_NUMBER is a nondeterministic function. However, employee_id is a unique
key, so the results of this application of the function are deterministic.

Macneil Fernandes©2005

Windowing Aggregate Functions
• Windowing functions can be used to compute cumulative, moving, and centered

aggregates.
• They return a value for each row in the table, which depends on other rows in the

corresponding window.
• They can be used only in the SELECT and ORDER BY clauses of the query.
• Two other functions are available: FIRST_VALUE, which returns the first value in the

window; and LAST_VALUE, which returns the last value in the window.
• These functions provide access to more than one row of a table without a self-join.
• Aggregate Functions include:

SUM
AVG
MAX and MIN
COUNT
STDDEV
VARIANCE
FIRST_VALUE and LAST_VALUE

Macneil Fernandes©2005

SUM
• SUM returns sum of values of expr. You can use it as an aggregate or analytic function.
• If you specify DISTINCT, you can specify only the query_partition_clause of the

analytic_clause. The order_by_clauseand windowing_clauseare not allowed.
• The following example calculates, for each manager in the sample table employees, a

cumulative total of salaries of employees who answer to that manager that are equal to or
less than the current salary. You can see that Raphaely and Zlotkey have the same
cumulative total. This is because Raphaely and Cambrault have the identical salaries, so
Oracle adds together their salary values and applies the same cumulative total to both
rows.
SELECT ………,SUM(salary) OVER (PARTITION BY manager_id ORDER

BY salary RANGE UNBOUNDED PRECEDING) l_csum FROM emp;
MANAGER_ID LNAME SALARY L_CSUM
100 Mourgos 5800 5800
100 Vollman 6500 12300
100 Kaufling 7900 20200
……………………..
201 Goyal 6000 6000
201 Gietz 8300 14300

Macneil Fernandes©2005

AVG
• AVG returns average value of expr.You can use it as an aggregate or analytic function.
• If you specify DISTINCT, you can specify only the query_partition_clause of the

analytic_clause. The order_by_clauseand windowing_clauseare not allowed.
• The following example calculates, for each employee in the employees table, the

average salary of the employees reporting to the same manager who were hired in the
range just before through just after the employee:
SELECT……,AVG(salary) OVER (PARTITION BY manager_id ORDER
BY hire_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS
c_mavg FROM employees;

MANAGER_ID LNAME HIRE_DATE SALARY C_MAVG
100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 15000
100 Raphaely 07-DEC-94 11000 11966.6667
100 Kaufling 01-MAY-95 7900 10633.3333
100 Hartstein 17-FEB-96 13000 9633.33333
100 Weiss 18-JUL-96 8000 11666.6667
100 Russell 01-OCT-96 14000 11833.3333

Macneil Fernandes©2005

MAX and MIN

MAX
• MAX returns maximum value of expr. You can use it as an aggregate or analytic function.
• If you specify DISTINCT, you can specify only the query_partition_clause of the

analytic_clause. The order_by_clauseand windowing_clauseare not allowed.
• The following example calculates, for each employee, the highest salary of the

employees reporting to the same manager as the employee.
SELECT………, MAX(salary) OVER (PARTITION BY manager_id) AS
mgr_max FROM employees;

MANAGER_ID LAST_NAME SALARY MGR_MAX
100 Kochhar 17000 17000
100 De Haan 17000 17000

100 Raphaely 11000 17000
100 Kaufling 7900 17000
100 Fripp 8200 17000

100 Weiss 8000 17000

Macneil Fernandes©2005

MAX and MIN

MIN
• MIN returns minimum value of expr. You can use it as an aggregate or analytic function.
• If you specify DISTINCT, you can specify only the query_partition_clause of the

analytic_clause. The order_by_clauseand windowing_clauseare not allowed.
• The following example determines, for each employee, the employees who were hired on

or before the same date as the employee. It then determines the subset of employees
reporting to the same manager as the employee, and returns the lowest salary in that
subset.
SELECT …,MIN(salary) OVER(PARTITION BY manager_id ORDER BY
hire_date RANGE UNBOUNDED PRECEDING) as p_cmin FROM emp;

MANAGER_ID LAST_NAME HIRE_DATE SALARY P_CMIN
100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 17000
100 Raphaely 07-DEC-94 11000 11000
100 Kaufling 01-MAY-95 7900 7900
100 Hartstein 17-FEB-96 13000 7900
100 Weiss 18-JUL-96 8000 7900
100 Russell 01-OCT-96 14000 7900 Macneil Fernandes©2005

COUNT
• COUNT returns number of rows in query. Canbe used as aggregate or analytic function.
• If you specify DISTINCT, you can specify only the query_partition_clause of the

analytic_clause. The order_by_clauseand windowing_clauseare not allowed.
• If you specify expr, COUNT returns the number of rows where expris not null. You can

count either all rows, or only distinct values of expr.
• If you specify the asterisk (*), this function returns all rows, including duplicates and nulls.
• The following example calculates, for each employee in the employees table, the moving

count of employees earning salaries in the range $50 less than through $150 greater
than the employee’s salary.
SELECT…, COUNT(*) OVER (ORDER BY salary RANGE BETWEEN 50
PRECEDING AND 150 FOLLOWING) AS mov_count FROM employees;

LAST_NAME SALARY MOV_COUNT
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Landry 2400 8
Gee 2400 8
Colmenares 2500 10
Patel 2500 10

Macneil Fernandes©2005

STDDEV

• STDDEV returns sample standard deviation of expr, a set of numbers. You can use it as
both an aggregate and analytic function.

• Oracle calculates the standard deviation as the square root of the variance defined for
the VARIANCE aggregate function.

• If you specify DISTINCT, you can specify only the query_partition_clause of the
analytic_clause. The order_by_clauseand windowing_clauseare not allowed.

• The query in the following example returns the cumulative standard deviation of salary
values in Department 80 in the sample table hr.employees, ordered by hire_date:
SELECT ……,STDDEV(salary) OVER (ORDER BY hire_date)"StdDev“
FROM employees WHERE department_id = 30;

LAST_NAME SALARY StdDev
Raphaely 11000 0
Khoo 3100 5586.14357
Tobias 2800 4650.0896
Baida 2900 4035.26125
Himuro 2600 3649.2465
Colmenares 2500 3362.58829 Macneil Fernandes©2005

VARIANCE
• VARIANCE returns variance of expr. You can use it as an aggregate or analytic function.
• Oracle calculates the variance of expr as follows:

§ 0 if the number of rows in expr = 1
§ VAR_SAMP if the number of rows in expr > 1

• The query returns the cumulative variance of salary in Dept 30 ordered by hiredate.
SELECT ……, VARIANCE(salary) OVER (ORDER BY hire_date)
"Variance“ FROM employees WHERE department_id = 30;

LAST_NAME SALARY Variance

Raphaely 11000 0
Khoo 3100 31205000
Tobias 2800 21623333.3

Baida 2900 16283333.3
Himuro 2600 13317000

Colmenares 2500 11307000

Macneil Fernandes©2005

FIRST_VALUE and LAST_VALUE
• The FIRST_VALUE and LAST_VALUE functions allow you to select the

first and last rows from a window.
FIRST_VALUE
• FIRST_VALUE is an analytic function. It returns the first value in an

ordered set of values.
• The following example selects, for each employee in Department 90, the

name of the employee with the lowest salary.
SELECT……, FIRST_VALUE(last_name) OVER (ORDER BY
salary ASC ROWS UNBOUNDED PRECEDING) AS lowest_sal
FROM (SELECT * FROM employees WHERE department_id =
90 ORDER BY employee_id);
DEPT_ID LAST_NAME SALARY LOWEST_SAL
90 Kochhar 17000 Kochhar
90 De Haan 17000 Kochhar

90 King 24000 Kochhar

Macneil Fernandes©2005

FIRST_VALUE and LAST_VALUE
LAST_VALUE
• LAST_VALUE is an analytic function. It returns the last value in an

ordered set of values.
• The following example returns, for each row, the hiredate of the employee

earning the highest salary.
SELECT ……, LAST_VALUE(hire_date) OVER (ORDER BY
salary ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING) AS lv FROM (SELECT * FROM
employees WHERE dept_id = 90 ORDER BY hire_date);

LAST_NAME SALARY HIRE_DATE LV

Kochhar 17000 21-SEP-89 17-JUN-87

De Haan 17000 13-JAN-93 17-JUN-87

King 24000 17-JUN-87 17-JUN-87

Macneil Fernandes©2005

Reporting Aggregate Functions
• After a query has been processed, aggregate values like the number of resulting rows or

an average value in a column can be easily computed within a partition and made
available to other reporting functions. Reporting aggregate functions return the same
aggregate value for every row in a partition

• The syntax is:
{SUM | AVG | MAX | MIN | COUNT | STDDEV | VARIANCE}
([ALL | DISTINCT] {<value expression1> | *})
OVER ([PARTITION BY <value expression2>[,...]])

where
• An asterisk (*) is only allowed in COUNT(*)
• DISTINCT is supported only if corresponding aggregate functions allow it
• <value expression1> and <value expression2> can be any valid expression involving

column references or aggregates.
• The PARTITION BY clause defines the groups on which the windowing functions would

be computed. If the PARTITION BY clause is absent, then the function is computed over
the whole query result set.

• Reporting functions can appear only in the SELECT clause or the ORDER BY clause.
• The major benefit of reporting functions is their ability to do multiple passes of data in a

single query block and speed up query performance. . Macneil Fernandes©2005

RATIO_TO_REPORT

• RATIO_TO_REPORT is an analytic function.
• It computes the ratio of a value to the sum of a set of values.
• If expr evaluates to null, the ratio-to-report value also evaluates to null.
• The set of values is determined by the query_partition_clause. If you omit that clause, the

ratio-to-report is computed over all rows returned by the query.
• The following example calculates the ratio-to-report of each purchasing clerk’s salary to

the total of all purchasing clerks’ salaries:
SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER ()
AS rr FROM employees WHERE job_id = ’PU_CLERK’;

LAST_NAME SALARY RR
Khoo 3100 .223021583

Baida 2900 .208633094
Tobias 2800 .201438849

Himuro 2600 .18705036
Colmenares 2500 .179856115 Macneil Fernandes©2005

LAG/LEAD Functions
• The LAG and LEAD functions are useful for comparing values when the

relative positions of rows can be known reliably.
• They work by specifying the count of rows which separate the target row

from the current row.
• Since the functions provide access to more than one row of a table at the

same time without a self-join, they can enhance processing speed.
• The LAG function provides access to a row at a given offset prior to the

current position, and the LEAD function provides access to a row at a
given offset after the current position.

Macneil Fernandes©2005

LAG/LEAD Functions
LAG
• LAG is an analytic function. Given a series of rows returned from a query

and a position of the cursor, LAG provides access to a row at a given
physical offset prior to that position.

• If you do not specify offset, its default is 1. The optional default value is
returned if the offset goes beyond the scope of the window. If you do not
specify default, its default value is null.

• The following example provides, for each salesperson in the employees
table, the salary of the employee hired just before:
SELECT ……, LAG(salary, 1, 0) OVER (ORDER BY
hire_date) AS prev_sal FROM employees WHERE job_id
= ’PU_CLERK’;

LAST_NAME HIRE_DATE SALARY PREV_SAL
Khoo 18-MAY-95 3100 0
Tobias 24-JUL-97 2800 3100
Baida 24-DEC-97 2900 2800
Himuro 15-NOV-98 2600 2900
Colmenares 10-AUG-99 2500 2600 Macneil Fernandes©2005

LAG/LEAD Functions
LEAD
• LEAD is an analytic function.Given a series of rows returned from a query and a position

of the cursor, LEAD provides access to a row at a given physical offset beyond that
position.

• If you do not specify offset, its default is 1. The optional default value is returned if the
offset goes beyond the scope of the table. If you do not specify default, its default value is
null.

• The following example provides, for each employee in the employees table, the hiredate
of the employee hired just after:
SELECT…,LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS
"NextHired“ FROM employees WHERE department_id = 30;

LAST_NAME HIRE_DATE NextHired
Raphaely 07-DEC-94 18-MAY-95
Khoo 18-MAY-95 24-JUL-97

Tobias 24-JUL-97 24-DEC-97
Baida 24-DEC-97 15-NOV-98
Himuro 15-NOV-98 10-AUG-99

Colmenares 10-AUG-99
Macneil Fernandes©2005

Linear Regression
• The regression functions support the fitting of an ordinary-least-squares

regression line to a set of number pairs. You can use them as both
aggregate functions or windowing or reporting functions.

• The functions are:
REGR_COUNT
REGR_AVGX and REGR_AVGY
REGR_SLOPE and REGR_INTERCEPT
REGR_R2
REGR_SXX and REGR_SYY and REGR_SXY

• Oracle applies the function to the set of (e1, e2) pairs after eliminating all
pairs for which either of e1 or e2 is null. e1 is interpreted as a value of the
dependent variable (a "y value"), and e2 is interpreted as a value of the
independent variable (an "x value"). Both expressions must be numbers.

Macneil Fernandes©2005

Linear Regression
• REGR_COUNT

REGR_COUNT returns the number of non-null number pairs used to fit the
regression line. If applied to an empty set (or if there are no (e1, e2) pairs where
neither of e1 or e2 is null), the function returns 0.

• REGR_AVGY and REGR_AVGX
REGR_AVGY and REGR_AVGX compute the averages of the dependent
variable and the independent variable of the regression line, respectively.
REGR_AVGY computes the average of its first argument (e1) after eliminating
(e1, e2) pairs where either of e1 or e2 is null. Similarly, REGR_AVGX computes
the average of its second argument (e2) after null elimination. Both functions
return NULL if applied to an empty set.

• REGR_SLOPE and REGR_INTERCEPT
The REGR_SLOPE function computes the slope of the regression line fitted to
non-null (e1, e2) pairs. The REGR_INTERCEPT function computes the y-
intercept of the regression line. REGR_INTERCEPT returns NULL whenever
slope or the regression averages are NULL.

Macneil Fernandes©2005

Linear Regression
• REGR_R2

The REGR_R2 function computes the coefficient of determination (usually
called "R-squared" or "goodness of fit") for the regression line. REGR_R2
returns values between 0 and 1 when the regression line is defined (slope
of the line is not null), and it returns NULL otherwise. The closer the value
is to 1, the better the regression line fits the data.

• REGR_SXX, REGR_SYY, and REGR_SXY
REGR_SXX, REGR_SYY and REGR_SXY functions are used in
computing various diagnostic statistics for regression analysis. After
eliminating (e1, e2) pairs where either of e1 or e2 is null, these functions
make the following computations:

REGR_SXX: REGR_COUNT(e1,e2) * VAR_POP(e2)
REGR_SYY: REGR_COUNT(e1,e2) * VAR_POP(e1)
REGR_SXY: REGR_COUNT(e1,e2) * COVAR_POP(e1, e2)

Macneil Fernandes©2005

CORR
• CORR returns the coefficient of correlation of a set of number pairs. Both expr1 and

expr2 are number expressions. Oracle applies the function to the set of (expr1 , expr2)
after eliminating the pairs for which either expr1 or expr2 is null.

• Then Oracle makes the following computation:
COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

• The function returns a value of type NUMBER. If the function is applied to an empty set, it
returns null.

• The following example returns the cumulative coefficient of correlation of monthly sales
revenues and monthly units sold from the sample tables sales and times for year 1998:
SELECT ……,CORR (SUM(s.amount_sold), SUM(s.quantity_sold))
OVER (ORDER BY t.calendar_month_number) as CUM_CORR FROM
sales s, times t WHERE s.time_id = t.time_id AND
calendar_year = 1998 GROUP BY t.calendar_month_number

ORDER BY t.calendar_month_number;
CALENDAR_MONTH_NUMBER CUM_CORR
2 1
3 .994309382
4 .852040875
5 .846652204
6 .871250628 Macneil Fernandes©2005

COVAR_POP
• COVAR_POP returns the population covariance of a set of number pairs. Both expr1 and

expr2 are number expressions. Oracle applies the function to the set of (expr1 , expr2)
pairs after eliminating all pairs for which either expr1 or expr2 is null. Then Oracle makes
the following computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n
where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is null.

• The following example calculates cumulative sample covariance of the list price and
minimum price of the products:
SELECT……,COVAR_POP(list_price, min_price) OVER (ORDER BY
product_id, supplier_id) AS CUM_COVP,
COVAR_SAMP(list_price, min_price) OVER (ORDER BY
product_id, supplier_id) AS CUM_COVS FROM
product_information p WHERE category_id = 29 ORDER BY
product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS
1774 103088 0
1775 103087 1473.25 2946.5
1794 103096 1702.77778 2554.16667
1825 103093 1926.25 2568.33333
2004 103086 1591.4 1989.25

Macneil Fernandes©2005

COVAR_SAMP
• COVAR_SAMP returns the sample covariance of a set of number pairs. Both expr1 and

expr2 are number expressions. Oracle applies the function to the set of (expr1 , expr2)
pairs after eliminating all pairs for which either expr1 or expr2 is null. Then Oracle makes
the following computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)
where n is the number of (expr1 , expr2) pairs where neither expr1 nor expr2 is null.

• The following example calculates cumulative sample covariance of the list price and
minimum price of the products:

SELECT ……, COVAR_POP(list_price, min_price) OVER (ORDER BY product_id,
supplier_id) AS CUM_COVP, COVAR_SAMP(list_price,
min_price) OVER (ORDER BY product_id, supplier_id) AS
CUM_COVS FROM product_information p WHERE category_id =
29 ORDER BY product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS
1774 03088 0
1775 103087 1473.25 2946.5
1794 103096 1702.77778 2554.16667
1825 103093 1926.25 2568.33333
2004 103086 1591.4 1989.25
2005 103086 1512.5 1815

Macneil Fernandes©2005

FIRST and LAST
• The FIRST and LAST functions are very similar. They operate on a set of values from a

set of rows that rank as the FIRST or LAST with respect to a given sorting specification.
• If only one row ranks as FIRST or LAST, the aggregate operates on the set with only one

element. When you need a value from the first or last row of a sorted group, but the
needed value is not the sort key, the FIRST and LAST functions eliminate the need for
self joins or views and enable better performance.

• The following example returns, within each department of the demo table hr.employees,
the minimum salary among the employees who make the lowest commission and the
maximum salary among the employees who make the highest commission but returns
the result for each employee within the department:
SELECT ……, MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY
commission_pct) OVER (PARTITION BY department_id)
"Worst", MAX(salary) KEEP (DENSE_RANK LAST ORDER BY
commission_pct) OVER (PARTITION BY department_id) "Best“
FROM employees ORDER BY department_id, salary;

LNAME DEPT_ID SALARY Worst Best
Whalen 10 4400 4400 4400
Goyal 20 6000 6000 13000
.
Greenberg 100 12000 6900 12000
Gietz 110 8300 8300 12000 Macneil Fernandes©2005

Hypothetical Rank and Distribution Functions
• These functions provide functionality useful for what-if analysis.
• As an example, what would be the rank of a row, if the row was

hypothetically inserted into a set of other rows?
• This family of aggregates takes one or more arguments of a hypothetical

row and an ordered group of rows, returning the RANK, DENSE_RANK,
PERCENT_RANK or CUME_DIST of the row as if it was hypothetically
inserted into the group.

• Hypothetical Rank and Distribution Syntax
[RANK | DENSE_RANK | PERCENT_RANK | CUME_DIST](
<constant expression> [, ...]) WITHIN GROUP (
ORDER BY <order by expression> [ASC|DESC] [NULLS
FIRST|NULLS LAST][, ...])

• Here, <constant expression> refers to an expression that evaluates to a
constant, and there may be more than one such expressions that are
passed as arguments to the function. The ORDER BY clause can contain
one or more expressions that define the sorting order on which the
ranking will be based. ASC, DESC, NULLS FIRST, NULLS LAST options
will be available for each expression in the ORDER BY. Macneil Fernandes©2005

Hypothetical Rank and Distribution Functions
• Using the list price data from the products table, you can calculate the RANK,

PERCENT_RANK and CUME_DIST for a hypothetical sweater with a price of
$50 for how it fits within each of the sweater subcategories. The query and
results are:
SELECT……, RANK(50) WITHIN GROUP (ORDER BY
prod_list_price DESC) as HRANK,
TO_CHAR(PERCENT_RANK(50) WITHIN GROUP

(ORDER BY prod_list_price),'9.999') AS HPERC_RANK,
TO_CHAR(CUME_DIST (50) WITHIN GROUP (ORDER BY
prod_list_price),'9.999') AS HCUME_DIST FROM products

WHERE prod_subcat LIKE 'Sweater%‘ GROUP BY prod_subcat;

PROD_SUBCAT HRANK HPERC_RANK HCUME_DIST

Sweaters- Boys 16 .911 .912

Sweaters- Girls 1 1.000 1.000

Sweaters- Men 240 .351 .352

Sweaters- Women 21 .783 .785

Macneil Fernandes©2005

Other Functions

Macneil Fernandes©2005

ABS

• ABS returns the absolute value of n.

• The following example returns the absolute value of -15:
SELECT ABS(-15) "Absolute" FROM DUAL;

Absolute

15

Macneil Fernandes©2005

ADD_MONTHS

• ADD_MONTHS returns the date d plus n months.
• The argument n can be any integer.
• If d is the last day of the month or if the resulting month has fewer days

than the day component of d, then the result is the last day of the resulting
month.

• Otherwise, the result has the same day component as d.
• The following example returns the month after the hire_date in the sample

table employees:
SELECT TO_CHAR(ADD_MONTHS(hire_date,1), ’DD-MON-
YYYY’) "Next month"

FROM employees
WHERE last_name = ’Baer’;

Next Month

07-JUL-1994 Macneil Fernandes©2005

ASCII
• ASCII returns the decimal representation in the database character set of

the first character of char.
• char can be of datatype CHAR, VARCHAR2, NCHAR, or NVARCHAR2.
• The value returned is of datatype NUMBER.
• If your database character set is 7-bit ASCII, this function returns an ASCII

value. If your database character set is EBCDIC Code, this function
returns an EBCDIC value. There is no corresponding EBCDIC character
function.

SELECT ASCII(’Q’) FROM DUAL;

ASCII(’Q’)

81

Macneil Fernandes©2005

ASCIISTR
• ASCIISTR takes as its argument a string in any character set and returns

an ASCII string in the database character set.
• The value returned contains only characters that appear in SQL, plus the

forward slash (/).
SELECT ASCIISTR(’flauwekul’) FROM
DUAL;

ASCIISTR(’FLAUW

\6<65\756<\6700

Macneil Fernandes©2005

CAST

• A CAST function converts one built-in datatype or collection-typed value into another built-
in datatype or collection-typed value.

• You can cast an unnamed operand (such as a date or the result set of a subquery) or a
named collection (such as a varray or a nested table) into a type-compatible datatype or
named collection.

• The type_name must be the name of a built-in datatype or collection type and the operand
must be a built-in datatype or must evaluate to a collection value.

• For the operand, expr can be either a built-in datatype or a collection type, and subquery
must return a single value of collection type or built-in type. MULTISET informs Oracle to
take the result set of the subquery and return a collection value.

• If you want to cast a named collection type into another named collection type, the
elements of both collections must be of the same type.

• If the result set of subquery can evaluate to multiple rows, you must specify the
MULTISET keyword.

• The rows resulting from the subquery form the elements of the collection value into which
they are cast. Without the MULTISET keyword, the subquery is treated as a scalar
subquery.

Macneil Fernandes©2005

CAST
• The following examples use the CAST function with scalar datatypes:

SELECT CAST(’22-OCT-1997’ AS DATE) FROM dual;

• This example casts a subquery:
SELECT e.empno, e.name, CAST(MULTISET(SELECT ea.street,

ea.city, ea.state FROM emp_address ea WHERE ea.empno =
e.empno) AS address_book_t) FROM employees e;

• CAST converts a varray type column into a nested table:
SELECT CAST(d.addresses AS address_book_t) FROM depts d

• The following example casts a MULTISET expression with an ORDER BY clause:
SELECT ……, CAST(MULTISET(SELECT p.projname FROM projects p

WHERE p.empid=e.empid ORDER BY p.projname) AS
projname_table_type) FROM emps e;

Macneil Fernandes©2005

CAST

Macneil Fernandes©2005

CEIL
• CEIL returns smallest integer greater than or equal to n.
• The following example returns the smallest integer greater than or equal to

15.7:
SELECT CEIL(15.7) "Ceiling" FROM DUAL;

Ceiling

16

Macneil Fernandes©2005

CHARTOROWID
• CHARTOROWID converts a value from CHAR, VARCHAR2, NCHAR, or

NVARCHAR2 datatype to ROWID datatype.
• The following example converts a character rowid representation to a

rowid. (The function will return a different rowid on different databases).
SELECT last_name FROM employees
WHERE ROWID =
CHARTOROWID('AAAFYmAAFAAAAFEAAP');

LAST_NAME

Greene

Macneil Fernandes©2005

CHR
• CHR returns the character having the binary equivalent to n in either the

database character set or the national character set.
• If USING NCHAR_CS is not specified, this function returns the character

having the binary equivalent to n as a VARCHAR2 value in the database
character set.

• If USING NCHAR_CS is specified, this function returns the character
having the binary equivalent to n as a NVARCHAR2 value in the national
character set.

SELECT CHR(67)||CHR(65)||CHR(84) "Dog" FROM
DUAL;

Dog

CAT

Macneil Fernandes©2005

COALESCE
• The COALESCE function returns the first non-null expr in the expression list.
• At least one expr must not be the literal NULL. If all occurrences of expr evaluate to null,

the function returns null.
• This function is a generalization of the NVL function.
• You can also use COALESCE as a variety of the CASE expression. For example,
COALESCE (expr1, expr2) is equivalent to:
CASE WHEN expr1 IS NOT NULL THEN expr1 ELSE expr2 END
COALESCE (expr1, expr2, ..., expr n), for n>=3 is equivalent to:
CASE WHEN expr1 IS NOT NULL THEN expr1
ELSE COALESCE (expr2, ..., expr n) END

• The following example gives a 10% discount to all products with a list price. It there is no
list price, the sale price is the minimum price, and if there is no minimum price, the sale
price is "5":

SELECT ……, COALESCE(0.9*list_price, min_price, 5) "Sale"
FROM product_information WHERE supplier_id = 102050;
PRODUCT_ID LIST_PRICE MIN_PRICE Sale
3355 5
1770 73 73
2378 305 247 274.5 Macneil Fernandes©2005

CONCAT
• CONCAT returns char1 concatenated with char2.
• Both char1 and char2 can be any of the datatypes CHAR, VARCHAR2, NCHAR,

NVARCHAR2, CLOB, or NCLOB.
• The string returned is of VARCHAR2 datatype and is in the same character set as char1.
• This function is equivalent to the concatenation operator (||).
• This example uses nesting to concatenate three character strings:
SELECT
CONCAT(CONCAT(last_name, '''s job category is '),
job_id) "Job“ FROM employees WHERE employee_id = 152;

Job
--
Hall's job category is SA_REP

Macneil Fernandes©2005

CURRENT_DATE
• CURRENT_DATE returns the current date in the session time zone, in a value in the

Gregorian calendar of datatype DATE.
• The following example illustrates that CURRENT_DATE is sensitive to the session time

zone:
ALTER SESSION SET TIME_ZONE = ’-5:0’;
ALTER SESSION SET NLS_DATE_FORMAT = ’DD-MON-YYYY

HH24:MI:SS’;
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-05:00 04-APR-2000 13:14:03

Macneil Fernandes©2005

CURRENT_TIMESTAM
• CURRENT_TIMESTAMP returns the current date and time in the session time zone, in a

value of datatype TIMESTAMP WITH TIME ZONE.
• The time zone displacement reflects the current local time of the SQL session. If you omit

precision, the default is 6. The difference between this function and LOCALTIMESTAMP
is that CURRENT_TIMESTAMP returns a TIMESTAMP WITH TIME ZONE value while
LOCALTIMESTAMP returns a TIMESTAMP value.

• In the optional argument, precision specifies the fractional second precision of the time
value returned.

• The following example illustrates that CURRENT_TIMESTAMP is sensitive to the session
time zone:

ALTER SESSION SET TIME_ZONE = ’-5:0’;
ALTER SESSION SET NLS_DATE_FORMAT = ’DD-MON-YYYY HH24:MI:SS’;
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP
--------------- ---
-05:00 04-APR-00 01.17.56.917550 PM -05:00

Macneil Fernandes©2005

DECODE
• A DECODE function compares expr to each search value one by one.
• If expr is equal to a search, Oracle returns the corresponding result. If no match is found,

Oracle returns default, or, if default is omitted, returns null. If expr and search contain
character data, Oracle compares them using nonpadded comparison semantics.

• The search, result, and default values can be derived from expressions. Oracle evaluates
each search value only before comparing it to expr, rather than evaluating all search
values before comparing any of them with expr. Oracle automatically converts expr and
each search value to the datatype of the first search value before comparing.

• In a DECODE function, Oracle considers two nulls to be equivalent. If expr is null, Oracle
returns the result of the first search that is also null.

• The maximum number of components in the DECODE function, including expr, searches,
results, and default is 255.

• This example decodes the value warehouse_id. If warehouse_id is 1, the function returns
’Southlake’; if warehouse_id is 2, it returns ’San Francisco’; etc. If warehouse_id is not 1,
2, 3, or 4, the function returns ’Non-domestic’.

SELECT product_id, DECODE (warehouse_id, 1, ’Southlake’,
2, ’San Francisco’, 3, ’New Jersey’, 4, ’Seattle’,
’Non-domestic’) quantity_on_hand FROM inventories;

Macneil Fernandes©2005

FLOOR
• FLOOR returns largest integer equal to or less than n.
• The following example returns the largest integer equal to or less than

15.7:
SELECT FLOOR(15.7) "Floor" FROM DUAL;

Floor

15

Macneil Fernandes©2005

GREATEST

• GREATEST returns the greatest of the list of exprs.
• All exprs after the first are implicitly converted to the datatype of the first expr before the

comparison. Oracle compares the exprs using nonpadded comparison semantics.
Character comparison is based on the value of the character in the database character
set. One character is greater than another if it has a higher character set value.

• If the value returned by this function is character data, its datatype is always VARCHAR2.
• The following statement selects the string with the greatest value:
SELECT GREATEST (’HARRY’, ’HARRIOT’, ’HAROLD’)
"Greatest" FROM DUAL;
Greatest

HARRY

Macneil Fernandes©2005

GROUP_ID
• The GROUP_ID function distinguishes duplicate groups resulting from a GROUP BY

specification.
• It is therefore useful in filtering out duplicate groupings from the query result.
• It returns an Oracle NUMBER to uniquely identify duplicate groups.
• This function is applicable only in a SELECT statement that contains a GROUP BY clause.
• If n duplicates exist for a particular grouping, it returns numbers in the range 0 to n-1.
• The following example assigns the value "1" to the duplicate co.country_region grouping from

a query on the sample tables sh.countries and sh.sales:
SELECT ………, GROUP_ID() g FROM sales s, customers c, countries

co WHERE s.cust_id = c.cust_id AND c.country_id =
co.country_id AND s.time_id = ’1-JAN-00’ AND
co.country_region IN (’Americas’, ’Europe’)

GROUP BY co.country_region;
COUNTRY_REGION COUNTRY_SUBREGION Revenue G
Americas Northern America 220844 0
Americas Southern America 10872 0
Europe Eastern Europe 12751 0
Americas 231716 0
Americas 231716 1
Europe 571437 1 Macneil Fernandes©2005

INITCAP
• INITCAP returns char, with the first letter of each word in uppercase, all other letters in

lowercase.
• Words are delimited by white space or characters that are not alphanumeric.
• char can be of any of the datatypes CHAR, VARCHAR2, NCHAR, or NVARCHAR2.
• The return value is the same datatype as char.
• The following example capitalizes each word in the string:
SELECT INITCAP(’the soap’) "Capitals" FROM DUAL;

Capitals

The Soap

Macneil Fernandes©2005

INSTR
• The "instring" functions search string for substring.
• The function returns an integer indicating the position of the character in string that is the

first character of this occurrence. INSTR calculates strings using characters as defined by
the input character set. INSTRB uses bytes instead of characters. INSTRC uses unicode
complete characters. INSTR2 uses UCS2 codepoints. INSTR4 uses UCS4 codepoints.

• Both string and substring can be any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The value returned is of NUMBER datatype.

• If the search is unsuccessful (if substring does not appear occurrence times after the
position character of string), the return value is 0.

• The following example searches the string "CORPORATE FLOOR", beginning with the
third character, for the string "OR". It returns the position in CORPORATE FLOOR at
which the second occurrence of "OR" begins:

SELECT INSTR(’CORPORATE FLOOR’,’OR’, 3, 2) "Instring"
FROM DUAL;

Instring

14

Macneil Fernandes©2005

LAST_DAY
• LAST_DAY returns the date of the last day of the month that contains

date.
• The following statement determines how many days are left in the current

month.
SELECT SYSDATE, LAST_DAY(SYSDATE) "Last",
LAST_DAY(SYSDATE) - SYSDATE "Days Left"
FROM DUAL;
SYSDATE Last Days Left
--------- --------- ----------
23-OCT-97 31-OCT-97 8

Macneil Fernandes©2005

LENGTH
• The length functions return the length of char.
• LENGTH calculates length using characters as defined by the input character set.

LENGTHB uses bytes instead of characters. LENGTHC uses unicode complete
characters. LENGTH2 uses UCS2 codepoints. LENGTH4 uses UCS4 codepoints..

• The return value is of datatype NUMBER. If char has datatype CHAR, the length includes
all trailing blanks.

• If char is null, this function returns null.
• The following examples use the LENGTH function using single- and multibyte database

character set.
SELECT LENGTH(’CANDIDE’) "Length in characters"
FROM DUAL;
Length in characters

7

Macneil Fernandes©2005

LOWER
• LOWER returns char, with all letters lowercase.
• The following example returns a string in lowercase:
SELECT LOWER(’MR. SCOTT MCMILLAN’) "Lowercase"

FROM DUAL;

Lowercase

mr. scott mcmillan

Macneil Fernandes©2005

LPAD
• LPAD returns char1, left-padded to length n with the sequence of characters in char2;

char2 defaults to a single blank.
• If char1 is longer than n, this function returns the portion of char1 that fits in n.
• Both char1 and char2 can be any of the datatypes CHAR, VARCHAR2, NCHAR,

NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 datatype and is in
the same character set as char1.

• The argument n is the total length of the return value as it is displayed on your terminal
screen.

• In most character sets, this is also the number of characters in the return value. However,
in some multibyte character sets, the display length of a character string can differ from
the number of characters in the string.

• The following example left-pads a string with the characters "*.":
SELECT LPAD(’Page 1’,15,’*.’) "LPAD example"
FROM DUAL;
LPAD example

..*.*.*Page 1

Macneil Fernandes©2005

LTRIM
• LTRIM removes characters from the left of char, with all the leftmost characters that

appear in set removed; set defaults to a single blank.
• If char is a character literal, you must enclose it in single quotes.
• Oracle begins scanning char from its first character and removes all characters that

appear in set until reaching a character not in set and then returns the result.
• Both char and set can be any of the datatypes CHAR, VARCHAR2, NCHAR,

NVARCHAR2, CLOB, or NCLOB.
• The string returned is of VARCHAR2 datatype and is in the same character set as char.
• The following example trims all of the left-most x’s and y’s from a string:
SELECT LTRIM(’xyxXxyLAST WORD’,’xy’) "LTRIM example"
FROM DUAL;

LTRIM example

XxyLAST WORD

Macneil Fernandes©2005

MONTHS_BETWEEN
• MONTHS_BETWEEN returns number of months between dates date1 and date2.
• If date1 is later than date2, result is positive; if earlier, negative.
• If date1 and date2 are either the same days of the month or both last days of months, the

result is always an integer.
• Otherwise Oracle calculates the fractional portion of the result based on a 31-day month

and considers the difference in time components date1 and date2.
• The following example calculates the months between two dates:

SELECT MONTHS_BETWEEN
(TO_DATE(’02-02-1995’,’MM-DD-YYYY’),
TO_DATE(’01-01-1995’,’MM-DD-YYYY’)) "Months"
FROM DUAL;
Months

1.03225806

Macneil Fernandes©2005

NULLIF
• The NULLIF function compares expr1 and expr2.
• If they are equal, the function returns null.
• If they are not equal, the function returns expr1.
• You cannot specify the literal NULL for expr1.
• The NULLIF function is logically equivalent to the following CASE expression:
CASE WHEN expr1 = expr 2 THEN NULL ELSE expr1 END
• The following example selects those employees from the sample schema hr who have

changed jobs since they were hired, as indicated by a job_id in the job_history table
different from the current job_id in the employees table:

SELECT e.last_name, NULLIF(e.job_id, j.job_id) "Old Job
ID“ FROM employees e, job_history j

WHERE e.employee_id = j.employee_id;
LAST_NAME Old Job ID
------------------------- ----------
De Haan AD_VP
Kochhar AD_VP
Kochhar AD_VP

Macneil Fernandes©2005

NVL
• If expr1 is null, NVL returns expr2.
• If expr1 is not null, NVL returns expr1. The arguments expr1 and expr2

can have any datatype. If their datatypes are different, Oracle converts
expr2 to the datatype of expr1 before comparing them.

• The datatype of the return value is always the same as the datatype of
expr1, unless expr1 is character data, in which case the return value’s
datatype is VARCHAR2 and is in the character set of expr1.

• The following example returns a list of employee names and commissions,
substituting "Not Applicable" if the employee receives no commission:
SELECT NVL(TO_CHAR(commission_pct), ’Not Applicable’)
"COMMISSION" FROM employees WHERE lname LIKE ’B%’;
LAST_NAME COMMISSION
Baer Not Applicable
Banda .11
Bates .16

Macneil Fernandes©2005

NVL2
• If expr1 is not null, NVL2 returns expr2.
• If expr1 is null, NVL2 returns expr3.
• The argument expr1can have any datatype. The arguments expr2and expr3can have any

datatypes except LONG.
• If the datatypes of expr2 and expr3 are different, Oracle converts expr3 to the datatype of

expr2 before comparing them unless expr3 is a null constant.
• The datatype of the return value is always the same as the datatype of expr2, unless

expr2 is character data, in which case the return value’s datatype is VARCHAR2.
• The following example shows whether the income of some employees is made up of

salary plus commission, or just salary, depending on whether the commission_pct column
of employees is null or not.

SELECT last_name, salary, NVL2(commission_pct, salary +
(salary * commission_pct), salary) income FROM
employees WHERE last_name like ’B%’;

LAST_NAME SALARY INCOME
Baer 10000 10000
Baida 2900 2900
Banda 6200 6882

Macneil Fernandes©2005

REPLACE
• REPLACE returns char with every occurrence of search_string replaced

with replacement_string.
• If replacement_string is omitted or null, all occurrences of search_string

are removed.
• If search_string is null, char is returned.
• This function provides a superset of the functionality provided by the

TRANSLATE function. TRANSLATE provides single-character, one-to-one
substitution. REPLACE lets you substitute one string for another as well as
to remove character strings.

• The following example replaces occurrences of "J" with "BL":
SELECT REPLACE(’JACK and JUE’,’J’,’BL’) "Changes"
FROM DUAL;
Changes

BLACK and BLUE

Macneil Fernandes©2005

ROUND (number)
• ROUND returns number rounded to integer places right of the decimal point.
• If integer is omitted, number is rounded to 0 places. integer can be negative to round off

digits left of the decimal point. integer must be an integer.
• The following example rounds a number to one decimal point:

SELECT ROUND(15.193,1) "Round" FROM DUAL;
Round

15.2

• The following example rounds a number one digit to the left of the decimal point:
SELECT ROUND(15.193,-1) "Round" FROM DUAL;
Round

20

Macneil Fernandes©2005

ROUND (date)
• ROUND returns date rounded to the unit specified by the format model

fmt.
• If you omit fmt, date is rounded to the nearest day.
• The following example rounds a date to the first day of the following year:

SELECT ROUND (TO_DATE (’27-OCT-00’),’YEAR’)

"New Year" FROM DUAL;

New Year

01-JAN-01

Macneil Fernandes©2005

RPAD
• RPAD returns char1, right-padded to length n with char2, replicated as

many times as necessary; char2 defaults to a single blank.
• If char1 is longer than n, this function returns the portion of char1 that fits

in n.
• The argument n is the total length of the return value as it is displayed on

your terminal screen.
• The following example rights-pads a name with the letters "ab" until it is 12

characters long:
SELECT RPAD(’MORRISON’,12,’ab’) "RPAD example"
FROM DUAL;
RPAD example

MORRISONabab

Macneil Fernandes©2005

RTRIM
• RTRIM returns char, with all the rightmost characters that appear in set

removed; set defaults to a single blank.
• If char is a character literal, you must enclose it in single quotes. RTRIM

works similarly to LTRIM.
• The following example trims the letters "xy" from the right side of a string:

SELECT RTRIM(’BROWNINGyxXxy’,’xy’) "RTRIM e.g."

FROM DUAL;

RTRIM e.g

BROWNINGyxX

Macneil Fernandes©2005

SOUNDEX
• SOUNDEX returns a character string containing the phonetic representation of char.
• This function lets you compare words that are spelled differently, but sound alike in

English.
• The following example returns the employees whose last names are a phonetic

representation of "Smyth":
SELECT last_name, first_name FROM hr.employees

WHERE SOUNDEX(last_name) = SOUNDEX(’SMYTHE’);

LAST_NAME FIRST_NAME

---------- ----------

Smith Lindsey

Smith William

Macneil Fernandes©2005

SUBSTR

• The substring functions return a portion of string, beginning at character position,
substring_length characters long.

• SUBSTR calculates lengths using characters as defined by the input character
set. SUBSTRB uses bytes instead of characters. SUBSTRC uses unicode
complete characters. SUBSTR2 uses UCS2 codepoints. SUBSTR4 uses UCS4
codepoints.
• If position is 0, it is treated as 1.
• If position is positive, Oracle counts from the beginning of string to find the first

character.
• If position is negative, Oracle counts backwards from the end of string.
• If substring_length is omitted, Oracle returns all characters to the end of string. If

substring_length is less than 1, a null is returned.
• The following example returns several specified substrings of "ABCDEFG":
SELECT SUBSTR(’ABCDEFG’,3,4) "Substring“ FROM DUAL;

Substring
CDEF Macneil Fernandes©2005

SYSDATE
• SYSDATE returns the current date and time. Requires no arguments.
• In distributed SQL statements, this function returns the date and time on

your local database.
• The following example returns the current date and time:

SELECT TO_CHAR
(SYSDATE, ’MM-DD-YYYY HH24:MI:SS’)"NOW"
FROM DUAL;
NOW

04-13-2001 09:45:51

Macneil Fernandes©2005

SYSTIMESTAMP
• The SYSTIMESTAMP function returns the system date, including

fractional seconds
• and time zone of the database. The return type is TIMESTAMP WITH

TIME ZONE.
• The following example returns the system date:
SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP

28-MAR-00 12.38.55.538741 PM -08:00

Macneil Fernandes©2005

TO_CHAR (character)

• The TO_CHAR (character) function converts NCHAR, NVARCHAR2, CLOB, or NCLOB
data to the database character set.

• The following example converts some CLOB data from the pm.print_media table to the
database character set:
SELECT TO_CHAR(ad_sourcetext) FROM print_media
WHERE product_id = 2268;

TO_CHAR(AD_SOURCETEXT)

TIGER2 2268...Standard Hayes Compatible Modem
Product ID: 2268
The #1 selling modem in the universe! Tiger2’s modem
includes call

management and Internet voicing. Make real-time full
duplex phone

calls at the same time you’re online.
********************************** Macneil Fernandes©2005

TO_CHAR (datetime)
• TO_CHAR converts date of DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or

TIMESTAMP WITH LOCAL TIME ZONE datatype to a value of VARCHAR2 datatype in
the format specified by the date format fmt.

• The ’ nlsparams’ specifies the language in which month and day names and abbreviations
are returned. This argument can have this form:

• ’NLS_DATE_LANGUAGE = language’
• If you omit nlsparams, this function uses the default date language for your session.

SELECT TO_CHAR(ts_col, ’DD-MON-YYYY HH24:MI:SSxFF’),
TO_CHAR(tstz_col, ’DD-MON-YYYY HH24:MI:SSxFF
TZH:TZM’)

FROM my_tab;
TO_CHAR(TS_COL,’DD-MON-YYYYHH2 TO_CHAR(TSTZ_COL,’DD-MON-

YYYYHH24:MI:
01-DEC-1999 10:00:00 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00 02-DEC-1999 10:00:00.000000 -08:00

Macneil Fernandes©2005

TO_CHAR (number)
• TO_CHAR converts n of NUMBER datatype to a value of VARCHAR2 datatype, using the

optional number format fmt.
• The nlsparam specifies these characters that are returned by number format elements:

• Decimal character
• Group separator
• Local currency symbol
• International currency symbol

• This argument can have this form:
• ’NLS_NUMERIC_CHARACTERS = ’’dg’’
• NLS_CURRENCY = ’’text’’
• NLS_ISO_CURRENCY = territory ’

• The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters.

• In this example, the output is blank padded to the left of the currency symbol.
SELECT TO_CHAR(-10000,’L99G999D99MI’) "Amount“ FROM

DUAL;
Amount
$10,000.00- Macneil Fernandes©2005

TO_DATE
• TO_DATE converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype to a

value of DATE datatype.
• The fmt is a date format specifying the format of char.
• The nlsparam has the same purpose in this function as in the TO_CHAR function for date

conversion.
• The following example converts character strings into dates:

SELECT TO_DATE(’January 15, 1989, 11:00 A.M.’,
’Month dd, YYYY, HH:MI A.M.’, ’NLS_DATE_LANGUAGE =
American’) FROM DUAL;

TO_DATE(’

15-JAN-89

Macneil Fernandes©2005

TO_NUMBER
• TO_NUMBER converts char, a value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2

datatype containing a number in the format specified by the optional format model fmt, to
a value of NUMBER datatype.

• The following example converts character string data into a number:
UPDATE employees SET salary = salary +
TO_NUMBER(’100.00’, ’9G999D99’)

WHERE last_name = ’Perkins’;
• The nlsparam string in this function has the same purpose as it does in the TO_CHAR

function for number conversions.
SELECT TO_NUMBER(’-AusDollars100’,’L9G999D99’, ’

NLS_NUMERIC_CHARACTERS = ’’,.’’ NLS_CURRENCY =
’’AusDollars’’ ’) "Amount“ FROM DUAL;

Amount

-100

Macneil Fernandes©2005

TRANSLATE
• TRANSLATE returns char with all occurrences of each character in from_string replaced by

its corresponding character in to_string. Characters not in from_string are not replaced.
• The argument from_string can contain more characters than to_string. In this case, the

extra characters at the end of from_string have no corresponding characters in to_string.
• If these extra characters appear in char, they are removed from the return value.
• The following statement translates a license number. All letters ’ABC...Z’ are translated to

’X’ and all digits ’012 . . . 9’ are translated to ’9’:
SELECT TRANSLATE(’2KRW229’,’0123456789AKLMNOPQRSTUWXYZ’,

’9999999999XXXXXXXXXXXXXXXXXXX’) "License“ FROM DUAL;
License
9XXX999

• The following statement returns a license number with the characters removed and the
digits remaining:

SELECT TRANSLATE(’2KRW229’, ’0123456789AKLMNOQRSVWXZ’,
’0123456789’) "Translate example“ FROM DUAL;

Translate example

2229

Macneil Fernandes©2005

TRIM
• TRIM enables you to trim leading or trailing characters (or both) from a character string.
• If trim_character or trim_source is a character literal, you must enclose it in single quotes.
• If you specify LEADING, Oracle removes any leading characters equal to trim_character.
• If you specify TRAILING, Oracle removes any trailing characters equal to trim_character.
• If you specify BOTH or none of the three, Oracle removes leading and trailing characters

equal to trim_character.
• If you do not specify trim_character, the default value is a blank space.
• If you specify only trim_source, Oracle removes leading and trailing blank spaces.
• If either trim_source or trim_character is null then the TRIM function returns a null value.
• This example trims leading and trailing zeroes from a number:

SELECT TRIM (0 FROM 0009872348900) "TRIM Example"
FROM DUAL;
TRIM example

98723489

Macneil Fernandes©2005

TRUNC (number)

• TRUNC returns n truncated to m decimal places.
• If m is omitted, n is truncated to 0 places. m can be negative to truncate (make zero) m

digits left of the decimal point.
• The following example truncate numbers:

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;
Truncate

15.7
SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;
Truncate

10

Macneil Fernandes©2005

TRUNC (date)
• TRUNC returns datewith the time portion of the day truncated to the unit

specified by the format model fmt.
• If you omit fmt, date is truncated to the nearest day.
• The following example truncates a date:

SELECT TRUNC(TO_DATE(’27-OCT-92’,’DD-MON-YY’),
’YEAR’)

"New Year" FROM DUAL;

New Year

01-JAN-92

Macneil Fernandes©2005

UPPER
• UPPER returns char, with all letters uppercase. char can be any of the

datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.
• The return value is the same datatype as char.
• The following example returns a string in uppercase:

SELECT UPPER(’Large’) "Uppercase“ FROM DUAL;

Upper

LARGE

Macneil Fernandes©2005

VSIZE
• VSIZE returns the number of bytes in the internal representation of expr.
• If expris null, this function returns null.
• The following example returns the number of bytes in the last_name of the

employee in department 10:
SELECT last_name, VSIZE (last_name) "BYTES"

FROM employees

WHERE department_id = 10;

LAST_NAME BYTES

--------------- ----------

Whalen 6

Macneil Fernandes©2005

Format Models used in Functions like TO_CHAR(number) etc.

• A format model is a character literal that describes the format of DATE or
NUMBER data stored in a character string.

• When you convert a character string into a date or number, a format model
tells Oracle how to interpret the string.

• In SQL statements, you can use a format model as an argument of the
TO_CHAR and TO_DATE functions:
• To specify the format for Oracle to use to return a value from the

database
• To specify the format for a value you have specified for Oracle to store

in the database

Macneil Fernandes©2005

Format Models used in Functions like TO_CHAR(number) etc.
• You can use a format model to specify the format for Oracle to use to return

values from the database to you.
• The following statement selects the salaries of the employees in Department 80

and uses the TO_CHAR function to convert these salaries into character values
with the format specified by the number format model ’$9,990.99’:
SELECT last_name employee, TO_CHAR(salary,

’$99,990.99’)
FROM employees
WHERE department_id = 80;

• Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

• Different categories of format models include:
1. Number Format Models
2. Date Format Models
3. Format Model Modifiers

Macneil Fernandes©2005

Number Format Models

• You can use number format models:
• In the TO_CHAR function to translate a value of NUMBER datatype to

VARCHAR2 datatype
• In the TO_NUMBER function to translate a value of CHAR or

VARCHAR2 datatype to NUMBER datatype

Macneil Fernandes©2005

Macneil Fernandes©2005

Macneil Fernandes©2005

Macneil Fernandes©2005

Date Format Models
•You can use date format models:

•In the TO_DATE function to translate a character
value that is in a format other than the default date
format into a DATE value
•In the TO_CHAR function to translate a DATE
value that is in a format other than the default date
format into a string (for example, to print the date
from an application)

Macneil Fernandes©2005

Macneil Fernandes©2005

Macneil Fernandes©2005

Macneil Fernandes©2005

Macneil Fernandes©2005

